Mutual information for enhanced feature selection in visual tracking

被引:1
作者
Stamatescu, Victor [1 ]
Wong, Sebastien [2 ]
Kearney, David [1 ]
Lee, Ivan [1 ]
Milton, Anthony [1 ]
机构
[1] Univ S Australia, Mawson Lakes, SA, Australia
[2] Def Sci & Technol Org, Edinburgh, Midlothian, Scotland
来源
AUTOMATIC TARGET RECOGNITION XXV | 2015年 / 9476卷
关键词
visual tracking; feature selection; infomax space; mRMR;
D O I
10.1117/12.2176556
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper we investigate the problem of fusing a set of features for a discriminative visual tracking algorithm, where good features are those that best discriminate an object from the local background. Using a principled Mutual Information approach, we introduce a novel online feature selection algorithm that preserves discriminative features while reducing redundant information. Applying this algorithm to a discriminative visual tracking system, we experimentally demonstrate improved tracking performance on standard data sets.
引用
收藏
页数:11
相关论文
共 25 条
[1]   Feature analysis for human recognition and discrimination: Application to a person-following behaviour in a mobile robot [J].
Alvarez-Santos, V. ;
Pardo, X. M. ;
Iglesias, R. ;
Canedo-Rodriguez, A. ;
Regueiro, C. V. .
ROBOTICS AND AUTONOMOUS SYSTEMS, 2012, 60 (08) :1021-1036
[2]  
[Anonymous], 2007, 2007 IEEE C COMPUTER, DOI [DOI 10.1109/CVPR.2007.383267, 10.1109/CVPR.2007.383267]
[3]  
Bhattacharyya A., 1943, Bull Calcutta Math Soc, V35, P99
[4]   Online selection of discriminative tracking features [J].
Collins, RT ;
Liu, YX ;
Leordeanu, M .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2005, 27 (10) :1631-1643
[5]  
Comaniciu D, 2000, PROC CVPR IEEE, P142, DOI 10.1109/CVPR.2000.854761
[6]  
Cover T. M., Elements of Information Theory, V2nd
[7]   Adaptive mixture observation models for multiple object tracking [J].
Cui Peng ;
Sun LiFeng ;
Yang ShiQiang .
SCIENCE IN CHINA SERIES F-INFORMATION SCIENCES, 2009, 52 (02) :226-235
[8]   Research on collaborative negotiation for e-commerce. [J].
Feng, YQ ;
Lei, Y ;
Li, Y ;
Cao, RZ .
2003 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-5, PROCEEDINGS, 2003, :2085-2088
[9]  
Gatt A., 2010, IM VIS COMP NZ IVCNZ, P1
[10]   A model of saliency-based visual attention for rapid scene analysis [J].
Itti, L ;
Koch, C ;
Niebur, E .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1998, 20 (11) :1254-1259