Bi-Modal Deep Boltzmann Machine Based Musical Emotion Classification

被引:8
作者
Huang, Moyuan [1 ]
Rong, Wenge [1 ]
Arjannikov, Tom [2 ]
Jiang, Nan [1 ]
Xiong, Zhang [1 ]
机构
[1] Beihang Univ, Sch Comp Sci & Engn, Beijing, Peoples R China
[2] Univ Victoria, Dept Comp Sci, Victoria, BC, Canada
来源
ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2016, PT II | 2016年 / 9887卷
关键词
Music; Emotion; Deep Boltzmann Machine; Audio; Lyrics;
D O I
10.1007/978-3-319-44781-0_24
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Music plays an important role in many people's lives. When listening to music, we usually choose those music pieces that best suit our current moods. However attractive, automating this task remains a challenge. To this end the approaches in the literature exploit different kinds of information (audio, visual, social, etc.) about individual music pieces. In this work, we study the task of classifying music into different mood categories by integrating information from two domains: audio and semantic. We combine information extracted directly from audio with information about the corresponding tracks' lyrics using a bi-modal Deep Boltzmann Machine architecture and show the effectiveness of this approach through empirical experiments using the largest music dataset publicly available for research and benchmark purposes.
引用
收藏
页码:199 / 207
页数:9
相关论文
共 21 条
[1]  
[Anonymous], 1986, INFORM PROCESSING DY
[2]  
[Anonymous], 2009, Deep boltzmann machines
[3]  
[Anonymous], 2007, P 9 INT C MUS INF RE
[4]  
[Anonymous], 2009, 10 INT SOC MUSIC INF
[5]  
[Anonymous], 2012, ISMIR
[6]  
[Anonymous], P 4 INT SOC MUS INF
[7]  
Bertin-Mahieux T., 2011, P 12 INT SOC MUS INF, V2, P10, DOI DOI 10.7916/D8NZ8J07
[8]  
Corona H., 2015, EXPLORATION MOOD CLA
[9]  
Hao Xue, 2015, MultiMedia Modeling. 21st International Conference, MMM 2015. Proceedings: LNCS 8936, P26, DOI 10.1007/978-3-319-14442-9_3
[10]  
He H, 2008, LECT NOTES COMPUT SC, V5370, P426, DOI 10.1007/978-3-540-92137-0_47