Corrosion influence on the evaporation of sessile droplet

被引:9
作者
Lequien, F. [1 ]
Soulie, V. [1 ,2 ]
Moine, G. [1 ]
Lequien, A. [1 ]
Feron, D. [1 ]
Prene, P. [1 ]
Moehwald, H. [2 ]
Riegler, H. [2 ]
Zemb, T. [3 ]
机构
[1] Univ Paris Saclay, CEA, Den Serv Corros & Comportement Mat Environm SCCME, F-91191 Gif Sur Yvette, France
[2] Max Planck Inst Colloids & Interfaces, D-14424 Potsdam, Germany
[3] CEA CNRS UM2 ENSCM, UMR5257, Inst Chim Separat Marcoule, F-30207 Bagnols Sur Ceze, France
关键词
Corrosion; Evaporation; Sessile droplet; CHLORIDE SOLUTIONS; PITTING CORROSION; CONTACT LINE; SURFACES; BEHAVIOR; FLOW; 304-STAINLESS-STEEL; MECHANISM; DEPOSITS; IRON;
D O I
10.1016/j.colsurfa.2018.02.047
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The influence of the corrosion on the evaporation of sessile droplet of sodium chloride solution was quantitatively investigated at a relative humidity of 0%. On planar surface, sessile saline droplets evaporated in the pinned, constant contact area mode. The time of evaporation of a sessile saline droplet is much longer on iron substrate than on silicon. This is due to the initiation of corrosion phenomenon. At low and intermediate salt concentrations, the inverse of the classical Evans model is observed due to the evaporation time which is fast and the hydrodynamic flows linked to evaporation. Increasing salt concentration leads to the same evaporation rate for iron and silicon. This study shows that the conditions of evaporation will influence both the evaporation itself and the corrosion phenomenon.
引用
收藏
页码:59 / 66
页数:8
相关论文
共 43 条
  • [1] Corrosion of Zn under acidified marine droplets
    Azmat, N. S.
    Ralston, K. D.
    Muddle, B. C.
    Cole, I. S.
    [J]. CORROSION SCIENCE, 2011, 53 (04) : 1604 - 1615
  • [2] Droplet behavior on flat and textured surfaces: Co-occurrence of Deegan outward flow with Marangoni solute instability
    Bormashenko, Edward
    Bormashenko, Yelena
    Pogreb, Roman
    Stanevsky, Oleg
    Whyman, Gene
    [J]. JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2007, 306 (01) : 128 - 132
  • [3] Potential distribution in the Evans drop experiment
    Chen, CY
    Mansfeld, F
    [J]. CORROSION SCIENCE, 1997, 39 (02) : 409 - 413
  • [4] Products formed during the interaction of seawater droplets with zinc surfaces: I. Results from 1-and 2.5-day exposures
    Cole, I. S.
    Muster, T. H.
    Furman, S. A.
    Wright, N.
    Bradbury, A.
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2008, 155 (05) : C244 - C255
  • [5] Contact line deposits in an evaporating drop
    Deegan, RD
    Bakajin, O
    Dupont, TF
    Huber, G
    Nagel, SR
    Witten, TA
    [J]. PHYSICAL REVIEW E, 2000, 62 (01): : 756 - 765
  • [6] Capillary flow as the cause of ring stains from dried liquid drops
    Deegan, RD
    Bakajin, O
    Dupont, TF
    Huber, G
    Nagel, SR
    Witten, TA
    [J]. NATURE, 1997, 389 (6653) : 827 - 829
  • [7] Salt crystal purification by deliquescence/crystallization cycling
    Desarnaud, J.
    Shahidzadeh-Bonn, N.
    [J]. EPL, 2011, 95 (04)
  • [8] Study of the atmospheric corrosion of galvanised steel in a micrometric electrolytic droplet
    Dubuisson, Emilie
    Lavie, Philippe
    Dalard, Francis
    Caire, Jean-Pierre
    Szunerits, Sabine
    [J]. ELECTROCHEMISTRY COMMUNICATIONS, 2006, 8 (06) : 911 - 915
  • [9] A mathematical model for the evaporation of a thin sessile liquid droplet: Comparison between experiment and theory
    Dunn, G. J.
    Wilson, S. K.
    Duffy, B. R.
    David, S.
    Sefiane, K.
    [J]. COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2008, 323 (1-3) : 50 - 55
  • [10] Nonlocal description of evaporating drops
    Eggers, J.
    Pismen, L. M.
    [J]. PHYSICS OF FLUIDS, 2010, 22 (11)