Poly(ethylene glycol)-[60]Fullerene-Based Materials for Perovskite Solar Cells with Improved Moisture Resistance and Reduced Hysteresis

被引:59
作者
Collavini, Silvia [1 ]
Saliba, Michael [2 ]
Tress, Wolfgang R. [2 ]
Holzhey, Philippe J. [2 ,3 ]
Volker, Sebastian F. [1 ]
Domanski, Konrad [2 ]
Turren-Cruz, Silver H. [4 ,5 ]
Ummadisingu, Amita [2 ]
Zakeeruddin, Shaik M. [2 ]
Hagfeldt, Anders [4 ]
Gratzel, Michael [2 ]
Delgado, Juan L. [1 ,6 ]
机构
[1] Univ Basque Country, UPV EHU, POLYMAT, Ave Tolosa 72, Donostia San Sebastian 20018, Spain
[2] Ecole Polytech Fed Lausanne, Inst Chem Sci & Engn, Lab Photon & Interfaces, CH-1015 Lausanne, Switzerland
[3] Free Univ Berlin, Inst Expt Phys, Arnimallee 14, D-14195 Berlin, Germany
[4] Ecole Polytech Fed Lausanne, Inst Chem Sci & Engn, Lab Photomol Sci, CH-1015 Lausanne, Switzerland
[5] Benemerita Univ Autonoma Puebla, Ctr Invest Dispositivos Semicond, 14 Sur & Claudio,Ciudad Univ, Puebla, Mexico
[6] Ikerbasque, Basque Fdn Sci, Bilbao 48013, Spain
基金
瑞士国家科学基金会;
关键词
hysteresis; fullerenes; perovskites; solar cells; polymers; PERFORMANCE; FULLERENES; STABILITY; POLYMER; C-60;
D O I
10.1002/cssc.201702265
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A series of [60]fullerenes covalently functionalized with the polymer poly(ethylene glycol) is presented. These new [60]fullerene-based materials have been incorporated as additives in CH3NH3PbI3 (MAPbI(3)), the most common organic-inorganic perovskite used in perovskite solar cells. The extensive photovoltaic study performed by using these materials shows several beneficial effects on the performance of these cells, including a reduction in hysteresis and an increased stability against moisture, whereby the solar cells retain up to 97% of their initial power conversion efficiency in an ambient atmosphere.
引用
收藏
页码:1032 / 1039
页数:8
相关论文
共 30 条
[1]  
[Anonymous], 1989, ENERGY ENV SCI
[2]   CYCLOPROPYLATION OF FULLERENES [J].
BINGEL, C .
CHEMISCHE BERICHTE-RECUEIL, 1993, 126 (08) :1957-1959
[3]   Mechanism of the addition reaction of alkyl azides to [60]fullerene and the subsequent N2 extrusion to form monoimino-[60]fullerenes [J].
Cases, M ;
Duran, M ;
Mestres, J ;
Martín, N ;
Solà, M .
JOURNAL OF ORGANIC CHEMISTRY, 2001, 66 (02) :433-442
[4]   1 Carbon Nanoforms in Perovskite-Based Solar Cells [J].
Collavini, Silvia ;
Luis Delgado, Juan .
ADVANCED ENERGY MATERIALS, 2017, 7 (10)
[5]   Efficient Regular Perovskite Solar Cells Based on Pristine [70]Fullerene as Electron-Selective Contact [J].
Collavini, Silvia ;
Kosta, Ivet ;
Volker, Sebastian F. ;
Cabanero, German ;
Grande, Hans J. ;
Tena-Zaera, Ramon ;
Luis Delgado, Juan .
CHEMSUSCHEM, 2016, 9 (11) :1263-1270
[6]   Fullerene-Based Materials for Photovoltaic Applications: Toward Efficient, Hysteresis-Free, and Stable Perovskite Solar Cells [J].
Deng, Lin-Long ;
Xie, Su-Yuan ;
Gao, Feng .
ADVANCED ELECTRONIC MATERIALS, 2018, 4 (10)
[7]   Hole-Transporting Materials for Perovskite-Sensitized Solar Cells [J].
Dhingra, Pankul ;
Singh, Pallavi ;
Rana, Prem Jyoti Singh ;
Garg, Akshat ;
Kar, Prasenjit .
ENERGY TECHNOLOGY, 2016, 4 (08) :891-938
[8]   Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates [J].
Docampo, Pablo ;
Ball, James M. ;
Darwich, Mariam ;
Eperon, Giles E. ;
Snaith, Henry J. .
NATURE COMMUNICATIONS, 2013, 4
[9]   Hysteresis in organic-inorganic hybrid perovskite solar cells [J].
Elumalai, Naveen Kumar ;
Uddin, Ashraf .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2016, 157 :476-509
[10]   The Functions of Fullerenes in Hybrid Perovskite Solar Cells [J].
Fang, Yanjun ;
Bi, Cheng ;
Wang, Dong ;
Huang, Jinsong .
ACS ENERGY LETTERS, 2017, 2 (04) :782-794