Poisson Statistics for Matrix Ensembles at Large Temperature

被引:17
|
作者
Benaych-Georges, Florent [1 ]
Peche, Sandrine [2 ]
机构
[1] Univ Paris 05, UMR CNRS 8145, MAP 5, F-75270 Paris 6, France
[2] Univ Paris Diderot, LPMA, F-75013 Paris, France
关键词
Random matrices; beta-Ensembles; Poisson point process; BETA; LAW;
D O I
10.1007/s10955-015-1340-8
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this article, we consider -ensembles, i.e. collections of particles with random positions on the real line having joint distribution 1/Z(N)(beta) vertical bar Delta(lambda)vertical bar(beta) e(-N beta/4) Sigma(N)(i=1) lambda(2)(i) d lambda, in the regime where as . We briefly describe the global regime and then consider the local regime. In the case where stays bounded, we prove that the local eigenvalue statistics, in the vicinity of any real number, are asymptotically to those of a Poisson point process. In the case where , we prove a partial result in this direction.
引用
收藏
页码:633 / 656
页数:24
相关论文
共 50 条
  • [31] SCATTERING STATISTICS OF GENERALIZED SPATIAL POISSON POINT PROCESSES
    Perlmutter, Michael
    He, Jieqian
    Hirn, Matthew
    2022 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2022, : 5528 - 5532
  • [32] A global large deviation principle for discrete β-ensembles
    Dimitrov, Evgeni
    Zhang, Hengzhi
    ELECTRONIC JOURNAL OF PROBABILITY, 2023, 28
  • [33] Hard edge statistics of products of Polya ensembles and shifted GUE's
    Kieburg, Mario
    JOURNAL OF APPROXIMATION THEORY, 2022, 276
  • [34] Lyapunov Exponents for Some Isotropic Random Matrix Ensembles
    P. J. Forrester
    Jiyuan Zhang
    Journal of Statistical Physics, 2020, 180 : 558 - 575
  • [35] Limit theorems for Jacobi ensembles with large parameters
    Hermann, Kilian
    Voit, Michael
    TUNISIAN JOURNAL OF MATHEMATICS, 2021, 3 (04) : 843 - 860
  • [36] On the Relation Between Orthogonal, Symplectic and Unitary Matrix Ensembles
    Harold Widom
    Journal of Statistical Physics, 1999, 94 : 347 - 363
  • [37] On the relation between orthogonal, symplectic and unitary matrix ensembles
    Widom, H
    JOURNAL OF STATISTICAL PHYSICS, 1999, 94 (3-4) : 347 - 363
  • [38] On the Gaussian Random Matrix Ensembles with Additional Symmetry Conditions
    Vasilchuk, Vladimir
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2006, 2
  • [39] Lyapunov Exponents for Some Isotropic Random Matrix Ensembles
    Forrester, P. J.
    Zhang, Jiyuan
    JOURNAL OF STATISTICAL PHYSICS, 2020, 180 (1-6) : 558 - 575
  • [40] Gaussian perturbations of hard edge random matrix ensembles
    Claeys, Tom
    Doeraene, Antoine
    NONLINEARITY, 2016, 29 (11) : 3385 - 3416