Poisson Statistics for Matrix Ensembles at Large Temperature

被引:17
|
作者
Benaych-Georges, Florent [1 ]
Peche, Sandrine [2 ]
机构
[1] Univ Paris 05, UMR CNRS 8145, MAP 5, F-75270 Paris 6, France
[2] Univ Paris Diderot, LPMA, F-75013 Paris, France
关键词
Random matrices; beta-Ensembles; Poisson point process; BETA; LAW;
D O I
10.1007/s10955-015-1340-8
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this article, we consider -ensembles, i.e. collections of particles with random positions on the real line having joint distribution 1/Z(N)(beta) vertical bar Delta(lambda)vertical bar(beta) e(-N beta/4) Sigma(N)(i=1) lambda(2)(i) d lambda, in the regime where as . We briefly describe the global regime and then consider the local regime. In the case where stays bounded, we prove that the local eigenvalue statistics, in the vicinity of any real number, are asymptotically to those of a Poisson point process. In the case where , we prove a partial result in this direction.
引用
收藏
页码:633 / 656
页数:24
相关论文
共 50 条
  • [21] Cyclic Polya Ensembles on the Unitary Matrices and their Spectral Statistics
    Kieburg, Mario
    Li, Shi-Hao
    Zhang, Jiyuan
    Forrester, Peter J.
    CONSTRUCTIVE APPROXIMATION, 2023, 57 (03) : 1063 - 1108
  • [22] Duality in random matrix ensembles for all β
    Desrosiers, Patrick
    NUCLEAR PHYSICS B, 2009, 817 (03) : 224 - 251
  • [23] Poisson Statistics of Eigenvalues in the Hierarchical Anderson Model
    Evgenij Kritchevski
    Annales Henri Poincaré, 2008, 9 : 685 - 709
  • [24] Entropy and the Shannon-McMillan-Breiman Theorem for Beta Random Matrix Ensembles
    Alexander Bufetov
    Sevak Mkrtchyan
    Maria Shcherbina
    Alexander Soshnikov
    Journal of Statistical Physics, 2013, 152 : 1 - 14
  • [25] Spacings in Orthogonal and Symplectic Random Matrix Ensembles
    Kristina Schubert
    Constructive Approximation, 2015, 42 : 481 - 518
  • [26] Cyclic Pólya Ensembles on the Unitary Matrices and their Spectral Statistics
    Mario Kieburg
    Shi-Hao Li
    Jiyuan Zhang
    Peter J. Forrester
    Constructive Approximation, 2023, 57 : 1063 - 1108
  • [27] Matrix kernels for the Gaussian orthogonal and symplectic ensembles
    Tracy, CA
    Widom, H
    ANNALES DE L INSTITUT FOURIER, 2005, 55 (06) : 2197 - 2207
  • [28] A random walk approach to linear statistics in random tournament ensembles
    Joyner, Christopher H.
    Smilansky, Uzy
    ELECTRONIC JOURNAL OF PROBABILITY, 2018, 23
  • [29] Spacings in Orthogonal and Symplectic Random Matrix Ensembles
    Schubert, Kristina
    CONSTRUCTIVE APPROXIMATION, 2015, 42 (03) : 481 - 518
  • [30] Asymptotic theory for statistics of the Poisson-Voronoi approximation
    Thale, Christoph
    Yukich, J. E.
    BERNOULLI, 2016, 22 (04) : 2372 - 2400