Poisson Statistics for Matrix Ensembles at Large Temperature

被引:17
|
作者
Benaych-Georges, Florent [1 ]
Peche, Sandrine [2 ]
机构
[1] Univ Paris 05, UMR CNRS 8145, MAP 5, F-75270 Paris 6, France
[2] Univ Paris Diderot, LPMA, F-75013 Paris, France
关键词
Random matrices; beta-Ensembles; Poisson point process; BETA; LAW;
D O I
10.1007/s10955-015-1340-8
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this article, we consider -ensembles, i.e. collections of particles with random positions on the real line having joint distribution 1/Z(N)(beta) vertical bar Delta(lambda)vertical bar(beta) e(-N beta/4) Sigma(N)(i=1) lambda(2)(i) d lambda, in the regime where as . We briefly describe the global regime and then consider the local regime. In the case where stays bounded, we prove that the local eigenvalue statistics, in the vicinity of any real number, are asymptotically to those of a Poisson point process. In the case where , we prove a partial result in this direction.
引用
收藏
页码:633 / 656
页数:24
相关论文
共 50 条