Scale-reconfigurable miniature ferrofluidic robots for negotiating sharply variable spaces

被引:71
作者
Fan, Xinjian [1 ]
Jiang, Yihui [1 ]
Li, Mingtong [2 ]
Zhang, Yunfei [1 ]
Tian, Chenyao [3 ]
Mao, Liyang [3 ]
Xie, Hui [3 ]
Sun, Lining [1 ]
Yang, Zhan [1 ]
Sitti, Metin [2 ,4 ,5 ,6 ]
机构
[1] Soochow Univ, Sch Mech & Elect Engn, 8 Jixue Rd, Suzhou 215131, Peoples R China
[2] Max Planck Inst Intelligent Syst, Phys Intelligence Dept, D-70569 Stuttgart, Germany
[3] Harbin Inst Technol, State Key Lab Robot & Syst, Harbin 150080, Peoples R China
[4] Swiss Fed Inst Technol, Inst Biomed Engn, CH-8092 Zurich, Switzerland
[5] Koc Univ, Sch Med, TR-34450 Istanbul, Turkey
[6] Koc Univ, Coll Engn, TR-34450 Istanbul, Turkey
基金
中国博士后科学基金; 中国国家自然科学基金; 欧洲研究理事会;
关键词
MICROROBOTS; DROPLETS;
D O I
10.1126/sciadv.abq1677
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Magnetic miniature soft robots have shown great potential for facilitating biomedical applications by minimizing invasiveness and possible physical damage. However, researchers have mainly focused on fixed-size robots, with their active locomotion accessible only when the cross-sectional dimension of these confined spaces is comparable to that of the robot. Here, we realize the scale-reconfigurable miniature ferrofluidic robots (SMFRs) based on ferrofluid droplets and propose a series of control strategies for reconfiguring SMFR's scale and deformation to achieve trans-scale motion control by designing a multiscale magnetic miniature robot actuation (M3RA) system. The results showed that SMFRs, varying from centimeters to a few micrometers, leveraged diverse capabilities, such as locomotion in structured environments, deformation to squeeze through gaps, and even reversible scale reconfiguration for navigating sharply variable spaces. A miniature robot system with these capabilities combined is promising to be applied in future wireless medical robots inside confined regions of the human body.
引用
收藏
页数:14
相关论文
共 56 条
[1]  
Abbott JJ, 2020, ANNU REV CONTR ROBOT, V3, P57, DOI [10.1146/annurev-control-081219082713, 10.1146/annurev-control-081219-082713]
[2]   How Should Microrobots Swim? [J].
Abbott, Jake J. ;
Peyer, Kathrin E. ;
Lagomarsino, Marco Cosentino ;
Zhang, Li ;
Dong, Lixin ;
Kaliakatsos, Ioannis K. ;
Nelson, Bradley J. .
INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 2009, 28 (11-12) :1434-1447
[3]   A Shapeshifting Ferrofluidic Robot [J].
Ahmed, Reza ;
Ilami, Mahdi ;
Bant, Joseph ;
Beigzadeh, Borhan ;
Marvi, Hamid .
SOFT ROBOTICS, 2021, 8 (06) :687-698
[4]   FUNDAMENTAL SINGULARITIES OF VISCOUS-FLOW .1. IMAGE SYSTEMS IN VICINITY OF A STATIONARY NO-SLIP BOUNDARY [J].
BLAKE, JR ;
CHWANG, AT .
JOURNAL OF ENGINEERING MATHEMATICS, 1974, 8 (01) :23-29
[5]   Exact expression for the magnetic field of a finite cylinder with arbitrary uniform magnetization [J].
Caciagli, Alessio ;
Baars, Roel J. ;
Philipse, Albert P. ;
Kuipers, Bonny W. M. .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2018, 456 :423-432
[6]   Droplets As Liquid Robots [J].
Cejkova, Jitka ;
Banno, Taisuke ;
Hanczyc, Martin M. ;
Stepanek, Frantisek .
ARTIFICIAL LIFE, 2017, 23 (04) :528-549
[7]   Translational prospects of untethered medical microrobots [J].
Ceylan, Hakan ;
Yasa, Immihan C. ;
Kilic, Ugur ;
Hu, Wenqi ;
Sitti, Metin .
PROGRESS IN BIOMEDICAL ENGINEERING, 2019, 1 (01)
[8]   Self-assembly and novel planetary motion of ferrofluid drops in a rotational magnetic field [J].
Chen, Ching-Yao ;
Hsueh, Hao-Chung ;
Wang, Sheng-Yan ;
Li, Yan-Hom .
MICROFLUIDICS AND NANOFLUIDICS, 2015, 18 (5-6) :795-806
[9]   Vapour-mediated sensing and motility in two-component droplets [J].
Cira, N. J. ;
Benusiglio, A. ;
Prakash, M. .
NATURE, 2015, 519 (7544) :446-+
[10]   Magnetorheological fluids: a review [J].
de Vicente, Juan ;
Klingenberg, Daniel J. ;
Hidalgo-Alvarez, Roque .
SOFT MATTER, 2011, 7 (08) :3701-3710