Scale-reconfigurable miniature ferrofluidic robots for negotiating sharply variable spaces

被引:61
作者
Fan, Xinjian [1 ]
Jiang, Yihui [1 ]
Li, Mingtong [2 ]
Zhang, Yunfei [1 ]
Tian, Chenyao [3 ]
Mao, Liyang [3 ]
Xie, Hui [3 ]
Sun, Lining [1 ]
Yang, Zhan [1 ]
Sitti, Metin [2 ,4 ,5 ,6 ]
机构
[1] Soochow Univ, Sch Mech & Elect Engn, 8 Jixue Rd, Suzhou 215131, Peoples R China
[2] Max Planck Inst Intelligent Syst, Phys Intelligence Dept, D-70569 Stuttgart, Germany
[3] Harbin Inst Technol, State Key Lab Robot & Syst, Harbin 150080, Peoples R China
[4] Swiss Fed Inst Technol, Inst Biomed Engn, CH-8092 Zurich, Switzerland
[5] Koc Univ, Sch Med, TR-34450 Istanbul, Turkey
[6] Koc Univ, Coll Engn, TR-34450 Istanbul, Turkey
基金
中国博士后科学基金; 欧洲研究理事会; 中国国家自然科学基金;
关键词
MICROROBOTS; DROPLETS;
D O I
10.1126/sciadv.abq1677
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Magnetic miniature soft robots have shown great potential for facilitating biomedical applications by minimizing invasiveness and possible physical damage. However, researchers have mainly focused on fixed-size robots, with their active locomotion accessible only when the cross-sectional dimension of these confined spaces is comparable to that of the robot. Here, we realize the scale-reconfigurable miniature ferrofluidic robots (SMFRs) based on ferrofluid droplets and propose a series of control strategies for reconfiguring SMFR's scale and deformation to achieve trans-scale motion control by designing a multiscale magnetic miniature robot actuation (M3RA) system. The results showed that SMFRs, varying from centimeters to a few micrometers, leveraged diverse capabilities, such as locomotion in structured environments, deformation to squeeze through gaps, and even reversible scale reconfiguration for navigating sharply variable spaces. A miniature robot system with these capabilities combined is promising to be applied in future wireless medical robots inside confined regions of the human body.
引用
收藏
页数:14
相关论文
共 56 条
  • [1] Abbott JJ, 2020, ANNU REV CONTR ROBOT, V3, P57, DOI [10.1146/annurev-control-081219-082713, 10.1146/annurev-control-081219082713]
  • [2] How Should Microrobots Swim?
    Abbott, Jake J.
    Peyer, Kathrin E.
    Lagomarsino, Marco Cosentino
    Zhang, Li
    Dong, Lixin
    Kaliakatsos, Ioannis K.
    Nelson, Bradley J.
    [J]. INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 2009, 28 (11-12) : 1434 - 1447
  • [3] A Shapeshifting Ferrofluidic Robot
    Ahmed, Reza
    Ilami, Mahdi
    Bant, Joseph
    Beigzadeh, Borhan
    Marvi, Hamid
    [J]. SOFT ROBOTICS, 2021, 8 (06) : 687 - 698
  • [4] FUNDAMENTAL SINGULARITIES OF VISCOUS-FLOW .1. IMAGE SYSTEMS IN VICINITY OF A STATIONARY NO-SLIP BOUNDARY
    BLAKE, JR
    CHWANG, AT
    [J]. JOURNAL OF ENGINEERING MATHEMATICS, 1974, 8 (01) : 23 - 29
  • [5] Exact expression for the magnetic field of a finite cylinder with arbitrary uniform magnetization
    Caciagli, Alessio
    Baars, Roel J.
    Philipse, Albert P.
    Kuipers, Bonny W. M.
    [J]. JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2018, 456 : 423 - 432
  • [6] Droplets As Liquid Robots
    Cejkova, Jitka
    Banno, Taisuke
    Hanczyc, Martin M.
    Stepanek, Frantisek
    [J]. ARTIFICIAL LIFE, 2017, 23 (04) : 528 - 549
  • [7] Translational prospects of untethered medical microrobots
    Ceylan, Hakan
    Yasa, Immihan C.
    Kilic, Ugur
    Hu, Wenqi
    Sitti, Metin
    [J]. PROGRESS IN BIOMEDICAL ENGINEERING, 2019, 1 (01):
  • [8] Self-assembly and novel planetary motion of ferrofluid drops in a rotational magnetic field
    Chen, Ching-Yao
    Hsueh, Hao-Chung
    Wang, Sheng-Yan
    Li, Yan-Hom
    [J]. MICROFLUIDICS AND NANOFLUIDICS, 2015, 18 (5-6) : 795 - 806
  • [9] Vapour-mediated sensing and motility in two-component droplets
    Cira, N. J.
    Benusiglio, A.
    Prakash, M.
    [J]. NATURE, 2015, 519 (7544) : 446 - +
  • [10] Magnetorheological fluids: a review
    de Vicente, Juan
    Klingenberg, Daniel J.
    Hidalgo-Alvarez, Roque
    [J]. SOFT MATTER, 2011, 7 (08) : 3701 - 3710