Manufacturing Man-Made Magnetosomes: High-Throughput In Situ Synthesis of Biomimetic Magnetite Loaded Nanovesicles

被引:8
作者
Bakhshi, Poonam K. [1 ]
Bain, Jennifer [2 ]
Gul, Mine Orlu [3 ]
Stride, Eleanor [4 ]
Edirisinghe, Mohan [1 ]
Staniland, Sarah S. [2 ]
机构
[1] UCL, Dept Mech Engn, Roberts Torrington Pl, London WC1E 7JE, England
[2] Univ Sheffield, Dept Chem, Brook Hill, Sheffield S3 7HF, S Yorkshire, England
[3] UCL, Dept Pharmaceut, 29-39 Brunswick Sq, London WC1N 1AX, England
[4] Univ Oxford, Inst Biomed Engn, Old Rd Campus,Res Bldg, Oxford OX3 7DQ, England
基金
英国工程与自然科学研究理事会;
关键词
biomimetic; electrohydrodynamic; magnetosomes; magnetotactic bacteria; nanoparticles; MAGNETOSPIRILLUM-GRYPHISWALDENSE MSR-1; MAGNETOTACTIC BACTERIA; DRUG-DELIVERY; NANOPARTICLES; BIOMINERALIZATION; GROWTH; BIOTECHNOLOGY; TEMPERATURE; STRATEGIES; PARTICLES;
D O I
10.1002/mabi.201600181
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
A new synthetic method for the production of artificial magnetosomes, i.e., lipid-coated vesicles containing magnetic nanoparticles, is demonstrated. Magnetosomes have considerable potential in biomedical and other nanotechnological applications but current production methods rely upon magnetotactic bacteria which limits the range of sizes and shapes that can be generated as well as the obtainable yield. Here, electrohydrodynamic atomization is utilized to form nanoscale liposomes of tunable size followed by electroporation to transport iron into the nanoliposome core resulting in magnetite crystallization. Using a combination of electron and fluorescence microscopy, dynamic light scattering, Raman spectroscopy, and magnetic susceptibility measurements, it is shown that single crystals of single-phase magnetite can be precipitated within each liposome, forming a near-monodisperse population of magnetic nanoparticles. For the specific conditions used in this study the mean particle size is 58 nm (+/- 8 nm) but the system offers a high degree of flexibility in terms of both the size and composition of the final product.
引用
收藏
页码:1555 / 1561
页数:7
相关论文
共 39 条
[1]   Formation Pathways of Magnetite Nanoparticles by Coprecipitation Method [J].
Ahn, Taebin ;
Kim, Jong Hun ;
Yang, Hee-Man ;
Lee, Jeong Woo ;
Kim, Jong-Duk .
JOURNAL OF PHYSICAL CHEMISTRY C, 2012, 116 (10) :6069-6076
[2]   Chains of Cobalt Doped Magnetosomes Extracted from AMB-1 Magnetotactic Bacteria for Application in Alternative Magnetic Field Cancer Therapy [J].
Alphandery, E. ;
Carvallo, C. ;
Menguy, N. ;
Chebbi, I. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2011, 115 (24) :11920-11924
[3]  
Bain J., 2015, NAT SCI REP, V5, P14311
[4]   Bioinspired nanoreactors for the biomineralisation of metallic-based nanoparticles for nanomedicine [J].
Bain, Jennifer ;
Staniland, Sarah S. .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2015, 17 (24) :15508-15521
[5]   Magnetosome formation in prokaryotes [J].
Bazylinski, DA ;
Frankel, RB .
NATURE REVIEWS MICROBIOLOGY, 2004, 2 (03) :217-230
[6]   Controlled biomineralization by and applications of magnetotactic bacteria [J].
Bazylinski, Dennis A. ;
Schubbe, Sabrina .
ADVANCES IN APPLIED MICROBIOLOGY, VOL 62, 2007, 62 :21-62
[7]   MAGNETOTACTIC BACTERIA [J].
BLAKEMORE, R .
SCIENCE, 1975, 190 (4212) :377-379
[8]   Magnetic structure of greigite (Fe3S4) probed by neutron powder diffraction and polarized neutron diffraction [J].
Chang, Liao ;
Rainford, Brian D. ;
Stewart, J. Ross ;
Ritter, Clemens ;
Roberts, Andrew P. ;
Tang, Yan ;
Chen, Qianwang .
JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH, 2009, 114
[9]   Electrosprayed core-shell polymer-lipid nanoparticles for active component delivery [J].
Eltayeb, Megdi ;
Stride, Eleanor ;
Edirisinghe, Mohan .
NANOTECHNOLOGY, 2013, 24 (46)
[10]   Responsive Photonic Crystals [J].
Ge, Jianping ;
Yin, Yadong .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2011, 50 (07) :1492-1522