Multiple immunity-related genes control susceptibility of Arabidopsis thaliana to the parasitic weed Phelipanche aegyptiaca

被引:8
作者
Clarke, Christopher R. [1 ]
Park, So-Yon [2 ]
Tuosto, Robert [2 ]
Jia, Xiaoyan [2 ]
Yoder, Amanda [3 ]
Van Mullekom, Jennifer [3 ]
Westwood, James [2 ]
机构
[1] ARS, Genet Improvement Fruits & Vegetables Lab, USDA, Beltsville, MD 20705 USA
[2] Virginia Tech, Sch Plant & Environm Sci, Blacksburg, VA 24061 USA
[3] Virginia Tech, Dept Stat, Blacksburg, VA USA
基金
美国国家科学基金会;
关键词
Phelipanche aegyptiaca; Parasitic plants; Parasite resistance; Parasite susceptibility; Arabidopsis thaliana; Plant immunity; CELL-DEATH; DISEASE RESISTANCE; METHYL JASMONATE; MOLECULAR RESPONSES; EXPRESSION ANALYSIS; CYTOKININ RESPONSE; DEFENSE RESPONSES; STRESS RESPONSES; POWDERY MILDEW; AUXIN-RESPONSE;
D O I
10.7717/peerj.9268
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Parasitic weeds represent a major threat to agricultural production across the world. Little is known about which host genetic pathways determine compatibility for any host-parasitic plant interaction. We developed a quantitative assay to characterize the growth of the parasitic weed Phelipanche aegyptiaca on 46 mutant lines of the host plant Arabidopsis thaliana to identify host genes that are essential for susceptibility to the parasite. A. thaliana host plants with mutations in genes involved in jasmonic acid biosynthesis/signaling or the negative regulation of plant immunity were less susceptible to P. aegyptiaca parasitization. In contrast, A. thaliana plants with a mutant allele of the putative immunity hub gene Pfd6 were more susceptible to parasitization. Additionally, quantitative PCR revealed that P. aegyptiaca parasitization leads to transcriptional reprograming of several hormone signaling pathways. While most tested A. thaliana lines were fully susceptible to P. aegyptiaca parasitization, this work revealed several host genes essential for full susceptibility or resistance to parasitism. Altering these pathways may be a viable approach for limiting host plant susceptibility to parasitism.
引用
收藏
页数:26
相关论文
共 97 条
[1]   EIN2, a bifunctional transducer of ethylene and stress responses in Arabidopsis [J].
Alonso, JM ;
Hirayama, T ;
Roman, G ;
Nourizadeh, S ;
Ecker, JR .
SCIENCE, 1999, 284 (5423) :2148-2152
[2]   Genome-wide Insertional mutagenesis of Arabidopsis thaliana [J].
Alonso, JM ;
Stepanova, AN ;
Leisse, TJ ;
Kim, CJ ;
Chen, HM ;
Shinn, P ;
Stevenson, DK ;
Zimmerman, J ;
Barajas, P ;
Cheuk, R ;
Gadrinab, C ;
Heller, C ;
Jeske, A ;
Koesema, E ;
Meyers, CC ;
Parker, H ;
Prednis, L ;
Ansari, Y ;
Choy, N ;
Deen, H ;
Geralt, M ;
Hazari, N ;
Hom, E ;
Karnes, M ;
Mulholland, C ;
Ndubaku, R ;
Schmidt, I ;
Guzman, P ;
Aguilar-Henonin, L ;
Schmid, M ;
Weigel, D ;
Carter, DE ;
Marchand, T ;
Risseeuw, E ;
Brogden, D ;
Zeko, A ;
Crosby, WL ;
Berry, CC ;
Ecker, JR .
SCIENCE, 2003, 301 (5633) :653-657
[3]  
[Anonymous], 2016, OV GLIMMIX PROC
[4]   Regulatory role of SGT1 in early R gene-mediated plant defenses [J].
Austin, MJ ;
Muskett, P ;
Kahn, K ;
Feys, BJ ;
Jones, JDG ;
Parker, JE .
SCIENCE, 2002, 295 (5562) :2077-2080
[5]   Methyl jasmonate and methyl salicylate, but not cis-jasmone, evoke defenses against infection of Arabidopsis thaliana by Orobanche aegyptiaca [J].
Bar-Nun, Nurit ;
Mayer, Alfred M. .
WEED BIOLOGY AND MANAGEMENT, 2008, 8 (02) :91-96
[6]   Two methyl jasmonate-insensitive mutants show altered expression of AtVsp in response to methyl jasmonate and wounding [J].
Berger, S ;
Bell, E ;
Mullet, JE .
PLANT PHYSIOLOGY, 1996, 111 (02) :525-531
[7]   Analysis of resistance gene-mediated defense responses in Arabidopsis thaliana plants carrying a mutation in CPR5 [J].
Boch, J ;
Verbsky, ML ;
Robertson, TL ;
Larkin, JC ;
Kunkel, BN .
MOLECULAR PLANT-MICROBE INTERACTIONS, 1998, 11 (12) :1196-1206
[8]   The Diversity, Biogenesis, and Activities of Endogenous Silencing Small RNAs in Arabidopsis [J].
Bologna, Nicolas G. ;
Voinnet, Olivier .
ANNUAL REVIEW OF PLANT BIOLOGY, VOL 65, 2014, 65 :473-503
[9]   The cpr5 mutant of Arabidopsis expresses both NPR1-dependent and NPR1-independent resistance [J].
Bowling, SA ;
Clarke, JD ;
Liu, YD ;
Klessig, DF ;
Dong, XN .
PLANT CELL, 1997, 9 (09) :1573-1584
[10]   NDR1, A LOCUS OF ARABIDOPSIS-THALIANA THAT IS REQUIRED FOR DISEASE RESISTANCE TO BOTH A BACTERIAL AND A FUNGAL PATHOGEN [J].
CENTURY, KS ;
HOLUB, EB ;
STASKAWICZ, BJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (14) :6597-6601