Linear elastic systems with a finite number of degrees of freedom, the initial equations of motion of which are constructed using the finite element method or other discretization methods, are considered. Since, in applied dynamics problems, the motions are usually investigated in a frequency range with an upper bound, the degrees of freedom of the initial system of equations are split into dynamic and quasi-dynamic degrees. Finally, the initial system of equations is split into a small number of differential equations for the dynamic degrees of freedom and into a system of algebraic equations for determining the quasi-static displacements, represented in the form of a matrix series. The number of terms of the series taken into account depends on the accuracy required. (C) 2012 Elsevier Ltd. All rights reserved.