Universal Mechanism of Band-Gap Engineering in Transition-Metal Dichalcogenides

被引:196
作者
Kang, Mingu [1 ,3 ]
Kim, Beomyoung [1 ,2 ]
Ryu, Sae Hee [1 ]
Jung, Sung Won [1 ]
Kim, Jimin [1 ]
Moreschini, Luca [1 ,2 ]
Jozwiak, Chris [2 ]
Rotenberg, Eli [2 ]
Bostwick, Aaron [2 ]
Kim, Keun Su [1 ]
机构
[1] Pohang Univ Sci & Technol, Dept Phys, Pohang 37673, South Korea
[2] EO Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA
[3] MIT, Dept Phys, Cambridge, MA 02139 USA
关键词
Band-gap engineering; two-dimensional semiconductors; giant Stark effect; transition-metal dichalcogenides; ELECTRONIC-STRUCTURE; MONOLAYER;
D O I
10.1021/acs.nanolett.6b04775
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
van der Waals two-dimensional (2D) semiconductors have emerged as a class of materials with promising device characteristics owing to the intrinsic band gap. For realistic applications, the ideal is to modify the band gap in a controlled manner by a mechanism that can be generally applied to this class of materials. Here, we report the observation of a universally tunable band gap in the family of bulk 2H transition metal dichalcogenides (TMDs) by in situ surface doping of Rb atoms. A series of angle-resolved photoemission spectra unexceptionally shows that the band gap of TMDs at the zone corners is modulated in the range of 0.8-2.0 eV, which covers a wide spectral range from visible to near-infrared, with a tendency from indirect to direct band gap. A key clue to understanding the mechanism of this band-gap engineering is provided by the spectroscopic signature of symmetry breaking and resultant spin-splitting, which can be explained by the formation of 2D electric dipole layers within the surface bilayer of TMDs. Our results establish the surface Stark effect as a universal mechanism of band-gap engineering on the basis of the strong 2D nature of van der Waals semiconductors.
引用
收藏
页码:1610 / 1615
页数:6
相关论文
共 34 条
[1]   Strain engineering of WS2, WSe2, and WTe2 [J].
Amin, B. ;
Kaloni, T. P. ;
Schwingenschloegl, U. .
RSC ADVANCES, 2014, 4 (65) :34561-34565
[2]   First-principles theory of field-effect doping in transition-metal dichalcogenides: Structural properties, electronic structure, Hall coefficient, and electrical conductivity [J].
Brumme, Thomas ;
Calandra, Matteo ;
Mauri, Francesco .
PHYSICAL REVIEW B, 2015, 91 (15)
[3]   BAND-GAP ENGINEERING - FROM PHYSICS AND MATERIALS TO NEW SEMICONDUCTOR-DEVICES [J].
CAPASSO, F .
SCIENCE, 1987, 235 (4785) :172-176
[4]   Bandgap Engineering of Strained Monolayer and Bilayer MoS2 [J].
Conley, Hiram J. ;
Wang, Bin ;
Ziegler, Jed I. ;
Haglund, Richard F., Jr. ;
Pantelides, Sokrates T. ;
Bolotin, Kirill I. .
NANO LETTERS, 2013, 13 (08) :3626-3630
[5]   Strain-Induced Indirect to Direct Bandgap Transition in Multi layer WSe2 [J].
Desai, Sujay B. ;
Seol, Gyungseon ;
Kang, Jeong Seuk ;
Fang, Hui ;
Battaglia, Corsin ;
Kapadia, Rehan ;
Ager, Joel W. ;
Guo, Jing ;
Javey, Ali .
NANO LETTERS, 2014, 14 (08) :4592-4597
[6]   Electric Field Effects on Armchair MoS2 Nanoribbons [J].
Dolui, Kapildeb ;
Das Pemmaraju, Chaitanya ;
Sanvito, Stefano .
ACS NANO, 2012, 6 (06) :4823-4834
[7]   Electronic Structure of a Quasi-Freestanding MoS2 Monolayer [J].
Eknapakul, T. ;
King, P. D. C. ;
Asakawa, M. ;
Buaphet, P. ;
He, R. -H. ;
Mo, S. -K. ;
Takagi, H. ;
Shen, K. M. ;
Baumberger, F. ;
Sasagawa, T. ;
Jungthawan, S. ;
Meevasana, W. .
NANO LETTERS, 2014, 14 (03) :1312-1316
[8]   Observation of the giant stark effect in boron-nitride nanotubes [J].
Ishigami, M ;
Sau, JD ;
Aloni, S ;
Cohen, ML ;
Zettl, A .
PHYSICAL REVIEW LETTERS, 2005, 94 (05)
[9]  
Jiang T, 2014, NAT NANOTECHNOL, V9, P825, DOI [10.1038/NNANO.2014.176, 10.1038/nnano.2014.176]
[10]   Observation of tunable band gap and anisotropic Dirac semimetal state in black phosphorus [J].
Kim, Jimin ;
Baik, Seung Su ;
Ryu, Sae Hee ;
Sohn, Yeongsup ;
Park, Soohyung ;
Park, Byeong-Gyu ;
Denlinger, Jonathan ;
Yi, Yeonjin ;
Choi, Hyoung Joon ;
Kim, Keun Su .
SCIENCE, 2015, 349 (6249) :723-726