AN INERTIAL SUBGRADIENT-EXTRAGRADIENT ALGORITHM FOR SOLVING PSEUDOMONOTONE VARIATIONAL INEQUALITIES

被引:0
作者
Liu, Liya [1 ]
Petrusel, Adrian [2 ]
Qin, Xiaolong [3 ]
Yao, Jen-Chih [4 ]
机构
[1] Southwest Univ, Sch Math & Stat, Chongqing, Peoples R China
[2] Babes Bolyai Univ, Dept Math, Cluj Napoca, Romania
[3] Hangzhou Normal Univ, Dept Math, Hangzhou, Peoples R China
[4] Zhejiang Normal Univ, Dept Math, Jinhua, Zhejiang, Peoples R China
来源
FIXED POINT THEORY | 2022年 / 23卷 / 02期
关键词
Variational inequalities; inertial extrapolation; pseudomonotonicity; pseudoconvexity; projection method; subgradient-extragradient method; GENERALIZED MIXED EQUILIBRIUM; FIXED-POINT; PROJECTION METHOD; CONVERGENCE;
D O I
10.24193/fpt-ro.2022.2.08
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we introduce an iteration method for solving pseudomonotone variational inequalities and related pseudoconvex optimization problems in Hilbert spaces. The iterative scheme is based on inertial ideas and subgradient-extragradient ideas. A main feature of the method is that it formally requires only one projection step onto the feasible set. We prove a weak convergence of sequences generated by our method. In the end, some numerical examples are provided to illustrate the effectiveness and performance of the proposed algorithm. Meanwhile, we make some detailed comparisons with the known related schemes.
引用
收藏
页码:533 / 555
页数:23
相关论文
共 28 条
[1]   An inertial proximal method for maximal monotone operators via discretization of a nonlinear oscillator with damping [J].
Alvarez, F ;
Attouch, H .
SET-VALUED ANALYSIS, 2001, 9 (1-2) :3-11
[2]   The forward-backward-forward method from continuous and discrete perspective for pseudo-monotone variational inequalities in Hilbert spaces [J].
Bot, R., I ;
Csetnek, E. R. ;
Vuong, P. T. .
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2020, 287 (01) :49-60
[3]   Weak Convergence of an Iterative Method for Pseudomonotone Variational Inequalities and Fixed-Point Problems [J].
Ceng, L. C. ;
Teboulle, M. ;
Yao, J. C. .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2010, 146 (01) :19-31
[4]   The Subgradient Extragradient Method for Solving Variational Inequalities in Hilbert Space [J].
Censor, Y. ;
Gibali, A. ;
Reich, S. .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2011, 148 (02) :318-335
[5]   A Monotone Bregan Projection Algorithm for Fixed Point and Equilibrium Problems in a Reflexive Banach Space [J].
Cho, Sun Young .
FILOMAT, 2020, 34 (05) :1487-1497
[6]  
Cho SY, 2020, J NONLINEAR CONVEX A, V21, P1017
[7]   Generalized mixed equilibrium and fixed point problems in a Banach space [J].
Cho, Sun Young .
JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2016, 9 (03) :1083-1092
[8]   PSEUDOMONOTONE COMPLEMENTARITY-PROBLEMS IN HILBERT-SPACE [J].
COTTLE, RW ;
YAO, JC .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1992, 75 (02) :281-295
[9]  
Dinkelbach W., 1967, Management Science, V13, P492, DOI DOI 10.1287/MNSC.13.7.492
[10]   Inertial extragradient algorithms for strongly pseudomonotone variational inequalities [J].
Duong Viet Thong ;
Dang Van Hieu .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2018, 341 :80-98