Compact Fractional Fourier Domains

被引:16
作者
Serbes, Ahmet [1 ]
机构
[1] Yildiz Tech Univ, Dept Elect & Commun Engn, TR-34220 Istanbul, Turkey
关键词
Coarse-to-fine search; compact fractional Fourier domains; fractional Fourier transform; minimum l1 norm; TRANSFORM;
D O I
10.1109/LSP.2017.2672860
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this letter, a method for finding the compact fractional Fourier domains is presented. As a measure of compactness, we take the l(1)-norm. It is proposed that there exists at least one fractional Fourier domain in which l(1)-norm of the transformed signal is minimum. A coarse-to-fine grid search strategy is adopted to find the optimum fractional Fourier transform angle thatmakes l(1)-norm minimum with low computational cost. Extensive simulation results validate the proposed method.
引用
收藏
页码:427 / 431
页数:5
相关论文
共 9 条
[1]  
Bu HX, 2010, INT CONF SIGN PROCES, P2210, DOI 10.1109/ICOSP.2010.5656093
[2]   Fractional Fourier transform of the Gaussian and fractional domain signal support [J].
Capus, C ;
Brown, K .
IEE PROCEEDINGS-VISION IMAGE AND SIGNAL PROCESSING, 2003, 150 (02) :99-106
[3]  
Ozaktas H. M., 2001, The Fractional Fourier Transform With Applications in Optics and Signal Processing
[4]   Digital computation of the fractional Fourier transform [J].
Ozaktas, HM ;
Ankan, O ;
Kutay, MA ;
Bozdagi, G .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1996, 44 (09) :2141-2150
[5]   Detection and parameter estimation of multicomponent LFM signal based on the fractional Fourier transform [J].
Qi, L ;
Tao, R ;
Zhou, SY ;
Wang, Y .
SCIENCE IN CHINA SERIES F-INFORMATION SCIENCES, 2004, 47 (02) :184-198
[6]   Optimum signal and image recovery by the method of alternating projections in fractional Fourier domains [J].
Serbes, Ahmet ;
Durak, Lutfiye .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2010, 15 (03) :675-689
[7]  
Stankovie L., 2003, SIGNAL PROCESS, V83, P2549
[8]   Signal compression using discrete fractional Fourier transform and set partitioning in hierarchical tree [J].
Vijaya, C. ;
Bhat, J. S. .
SIGNAL PROCESSING, 2006, 86 (08) :1976-1983
[9]   Maximum Amplitude Method for Estimating Compact Fractional Fourier Domain [J].
Zheng, Liying ;
Shi, Daming .
IEEE SIGNAL PROCESSING LETTERS, 2010, 17 (03) :293-296