Text2Mesh: Text-Driven Neural Stylization for Meshes

被引:150
作者
Michel, Oscar [1 ]
Bar-On, Roi [1 ,2 ]
Liu, Richard [1 ]
Benaim, Sagie [2 ]
Hanocka, Rana [1 ]
机构
[1] Univ Chicago, Chicago, IL 60637 USA
[2] Tel Aviv Univ, Tel Aviv, Israel
来源
2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR) | 2022年
关键词
D O I
10.1109/CVPR52688.2022.01313
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this work, we develop intuitive controls for editing the style of 3D objects. Our framework, Text2Mesh, stylizes a 3D mesh by predicting color and local geometric details which conform to a target text prompt. We consider a disentangled representation of a 3D object using a fixed mesh input (content) coupled with a learned neural network, which we term a neural style field network (NSF). In order to modify style, we obtain a similarity score between a text prompt (describing style) and a stylized mesh by harnessing the representational power of CLIP. Text2Mesh requires neither a pre-trained generative model nor a specialized 3D mesh dataset. It can handle low-quality meshes (non-manifold, boundaries, etc.) with arbitrary genus, and does not require UV parameterization. We demonstrate the ability of our technique to synthesize a myriad of styles over a wide variety of 3D meshes. Our code and results are available in our project webpage: https://threedle.github.io/text2mesh/.
引用
收藏
页码:13482 / 13492
页数:11
相关论文
共 70 条
[1]  
Agarwal Sandhini, 2021, ARXIV210802818
[2]  
Akenine-Moller T., 2018, Real-time rendering: AK Peters/, V4th
[3]   Recent advances in mesh morphing [J].
Alexa, M .
COMPUTER GRAPHICS FORUM, 2002, 21 (02) :173-196
[4]  
[Anonymous], 2015, PROC CVPR IEEE, DOI DOI 10.1109/CVPR.2015.7298801
[5]  
[Anonymous], 2009, ACM SIGGRAPH Asia 2009 Papers, DOI DOI 10.1145/1618452.1618484
[6]  
[Anonymous], 2011, P 2011 SIGGRAPH AS C, DOI DOI 10.1145/2024156.2024160
[7]   NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis [J].
Ben Mildenhall ;
Srinivasan, Pratul P. ;
Tancik, Matthew ;
Barron, Jonathan T. ;
Ramamoorthi, Ravi ;
Ng, Ren .
COMPUTER VISION - ECCV 2020, PT I, 2020, 12346 :405-421
[8]  
Cao X, 2020, IEEE WINT CONF APPL, P3326, DOI 10.1109/WACV45572.2020.9093513
[9]  
Chang A X, 2015, COMPUTER SCI, V1512, P3
[10]  
Chefer Hila, 2021, ARXIV211012427