Escaping points in the boundaries of Baker domains

被引:6
作者
Baranski, Krzysztof [1 ]
Fagella, Nuria [2 ,3 ]
Jarque, Xavier [2 ,3 ]
Karpinska, Boguslawa [4 ]
机构
[1] Univ Warsaw, Inst Math, Ul Banacha 2, PL-02097 Warsaw, Poland
[2] Univ Barcelona, Dept Matemat & Informat, Gran Via 585, E-08007 Barcelona, Catalonia, Spain
[3] Barcelona Grad Sch Math BGSMath, Gran Via 585, Barcelona 08007, Catalonia, Spain
[4] Warsaw Univ Technol, Fac Math & Informat Sci, Ul Koszykowa 75, PL-00662 Warsaw, Poland
来源
JOURNAL D ANALYSE MATHEMATIQUE | 2019年 / 137卷 / 02期
关键词
D O I
10.1007/s11854-019-0011-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the dynamical behaviour of points in the boundaries of simply connected invariant Baker domains U of meromorphic maps f with a finite degree on U. We prove that if f|(U) is of hyperbolic or simply parabolic type, then almost every point in the boundary ofU,with respect to harmonicmeasure, escapes to infinity under iteration of f. On the contrary, if f|(U) is of doubly parabolic type, then almost every point in the boundary of U, with respect to harmonic measure, has dense forward trajectory in the boundary of U, in particular the set of escaping points in the boundary of U has harmonic measure zero. We also present some extensions of the results to the case when f has infinite degree on U, including the classical Fatou example.
引用
收藏
页码:679 / 706
页数:28
相关论文
共 39 条
  • [1] AARONSON J, 1981, J LOND MATH SOC, V23, P469
  • [2] AARONSON J, 1978, ANN I H POINCARE B, V14, P233
  • [3] ERGODIC-THEORY FOR MARKOV FIBERED SYSTEMS AND PARABOLIC RATIONAL MAPS
    AARONSON, J
    DENKER, M
    URBANSKI, M
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1993, 337 (02) : 495 - 548
  • [4] Aaronson J., 1997, Mathematical Surveys and Monographs, V50
  • [5] AARTS J, 2009, TRANS AMER MATH SOC, V338, P897, DOI DOI 10.1090/S0002-9947-1993-1182980-3
  • [6] [Anonymous], 1983, Cambridge Studies in Advanced Mathematics
  • [7] [Anonymous], 1992, Fundamental Principles of Mathematical Sciences
  • [8] Baker I.N., 1975, Ann. Acad. Sci. Fenn. A I Math., V1, P277
  • [9] Baker IN, 1999, ANN ACAD SCI FENN-M, V24, P437
  • [10] Univalent Baker domains
    Baranski, K
    Fagella, N
    [J]. NONLINEARITY, 2001, 14 (03) : 411 - 429