THE BLOW-UP AND GLOBAL EXISTENCE OF SOLUTIONS OF CAUCHY PROBLEMS FOR A TIME FRACTIONAL DIFFUSION EQUATION

被引:60
作者
Zhang, Quan-Guo [1 ,2 ]
Sun, Hong-Rui [1 ]
机构
[1] Lanzhou Univ, Key Lab Appl Math & Complex Syst, Sch Math & Stat, Lanzhou 730000, Gansu, Peoples R China
[2] Luoyang Normal Univ, Dept Math, Luoyang 471022, Henan, Peoples R China
关键词
Fractional differential equation; blow-up; global existence; Cauchy problems; CRITICAL EXPONENTS; WAVE-EQUATIONS; NONEXISTENCE;
D O I
10.12775/TMNA.2015.038
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we investigate the blow-up and global existence of solutions to the following time fractional nonlinear diffusion equations {(C)(0)D(t)(alpha)u - Delta u = vertical bar u vertical bar(P-1)u, x is an element of R-N, t > 0, u(0, x) = u(0)(x), x is an element of R-N, where 0 < alpha < 1, p > 1, u(0) is an element of C-0(R-N) and (C)(0)D(t)(alpha)u = (partial derivative/partial derivative t)(0)I-t(1-alpha)(u(t,x) - u(0)(x)), I-0(t)1-alpha denotes left Riemann-Liouville fractional integrals of order 1-alpha. We prove that if 1 < p < 1 + 2/N, then every nontrivial nonnegative solution blow-up in finite time, and if p >= 1 + 2/N and parallel to u(0)parallel to(Lqc(RN)), q(c) = N(p - 1)/2 is sufficiently small, then the problem has global solution.
引用
收藏
页码:69 / 92
页数:24
相关论文
共 29 条
[1]  
[Anonymous], 2001, Proc. Steklov Inst. Math.
[2]   MULTIDIMENSIONAL NON-LINEAR DIFFUSION ARISING IN POPULATION-GENETICS [J].
ARONSON, DG ;
WEINBERGER, HF .
ADVANCES IN MATHEMATICS, 1978, 30 (01) :33-76
[3]  
Bazhlekova E., 2000, Fract. Calc. Appl. Anal, V3, P213
[4]  
Cazenave T, 1998, OXFORD LECT SERIES M
[5]   An equation whose Fujita critical exponent is not given by scaling [J].
Cazenave, Thierry ;
Dickstein, Flavio ;
Weissler, Fred B. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2008, 68 (04) :862-874
[6]   The role of critical exponents in blow-up theorems: The sequel [J].
Deng, K ;
Levine, HA .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2000, 243 (01) :85-126
[7]   Cauchy problem for fractional diffusion equations [J].
Eidelman, SD ;
Kochubei, AN .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2004, 199 (02) :211-255
[8]   QUALITATIVE PROPERTIES OF SOLUTIONS TO A TIME-SPACE FRACTIONAL EVOLUTION EQUATION [J].
Fino, Ahmad Z. ;
Kirane, Mokhtar .
QUARTERLY OF APPLIED MATHEMATICS, 2012, 70 (01) :133-157
[9]  
FUJITA H, 1966, J FAC SCI U TOKYO 1, V13, P109
[10]   NONEXISTENCE OF GLOBAL SOLUTIONS OF SOME SEMILINEAR PARABOLIC DIFFERENTIAL EQUATIONS [J].
HAYAKAWA, K .
PROCEEDINGS OF THE JAPAN ACADEMY, 1973, 49 (07) :503-505