EQUIVARIANT SATAKE CATEGORY AND KOSTANT-WHITTAKER REDUCTION

被引:47
作者
Bezrukavnikov, Roman [1 ]
Finkelberg, Michael [2 ,3 ]
机构
[1] MIT, Dept Math, Cambridge, MA 02139 USA
[2] Inst Informat Transmiss Problems, Moscow 119002, Russia
[3] Independent Moscow Univ, Moscow 119002, Russia
关键词
Affine Grassmannian; Langlands dual group; Toda lattice;
D O I
10.17323/1609-4514-2008-8-1-39-72
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We explain (following V. Drinfeld) how the G(C[[t]]) equivariant derived category of the affine Grassmannian can be described in terms of coherent sheaves on the Langlands dual Lie algebra equivariant with respect to the adjoint action, due to some old results of V. Ginzburg. The global cohomology functor corresponds under this identification to restriction to the Kostant slice. We extend this description to loop rotation equivariant derived category, linking it to Harish Chandra bimodules for the Langlands dual Lie algebra, so that the global cohomology functor corresponds to the quantum Kostant-Whittaker reduction of a Harish-Chandra bimodule. We derive a conjecture by the authors and I. Mirkovic, which identifies the loop-rotation equivariant homology of the affine Grassmannian with quantized Toda lattice.
引用
收藏
页码:39 / 72
页数:34
相关论文
共 24 条
[1]  
[Anonymous], 1980, I HAUTES ETUDES SCI
[2]  
[Anonymous], 1998, ERGEBNISSE MATH IHRE
[3]   Quantum groups, the loop Grassmannian, and the Springer resolution [J].
Arkhipov, S ;
Bezrukavnikov, R ;
Ginzburg, V .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 17 (03) :595-678
[4]  
ARKHIPOV S, IARAEL J MA IN PRESS
[5]  
BASS H, 1968, ALGEBRAIC K THEORY
[6]   Koszul duality patterns in representation theory [J].
Beilinson, A ;
Ginzburg, V ;
Soergel, W .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 1996, 9 (02) :473-527
[7]  
Beilinson A., 1981, Asterisque, V100, P5
[8]  
Beilinson A., Quantization of Hitchin's integrable system and Hecke eigensheaves
[9]  
BEILINSON AA, 1987, LECT NOTES MATH, V1289, P27
[10]  
BENZVI D, ARXIV07060322V1MATHR