Uniqueness and stability in determining the heat radiative coefficient, the initial temperature and a boundary coefficient in a parabolic equation

被引:17
作者
Choulli, Mourad [1 ,2 ]
Yamamoto, Masahiro [3 ]
机构
[1] Univ Metz, Lab LMAM, UMR 7122, F-57045 Metz, France
[2] CNRS, F-57045 Metz, France
[3] Univ Tokyo, Grad Sch Math Sci, Tokyo 1538914, Japan
关键词
Inverse parabolic problem; Heat radiative coefficient; Initial temperature; Boundary coefficient;
D O I
10.1016/j.na.2007.10.031
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider an inverse parabolic problem. We prove that the heat radiative coefficient, the initial temperature and a boundary coefficient can be simultaneously determined from the final overdetermination, provided that the heat radiative coefficient is a priori known in a small subdomain. Moreover we establish a stability estimate for this inverse problem. (C) 2007 Elsevier Ltd. All rights reserved.
引用
收藏
页码:3983 / 3998
页数:16
相关论文
共 18 条
[1]  
Adams R., 1975, Sobolev Spaces
[2]  
[Anonymous], 2004, ILL POSED PROBL
[3]  
[Anonymous], 1975, IMPROPERLY POSED PRO
[4]  
[Anonymous], 2004, ANAL HEAT EQUATIONS
[5]   On the determination of an unknown boundary function in a parabolic equation [J].
Choulli, M .
INVERSE PROBLEMS, 1999, 15 (03) :659-667
[6]   Generic well-posedness of an inverse parabolic problem - The Holder-space approach [J].
Choulli, M ;
Yamamoto, M .
INVERSE PROBLEMS, 1996, 12 (03) :195-205
[7]  
CHOULLI M, 1993, CR ACAD SCI I-MATH, V316, P1041
[8]   AN INVERSE PROBLEM FOR A SEMILINEAR PARABOLIC EQUATION [J].
CHOULLI, M .
INVERSE PROBLEMS, 1994, 10 (05) :1123-1132
[9]  
Dautray R., 1984, ANAL MATH CALCUL NUM, V5
[10]  
Gilbarg D., 1998, Elliptic Partial Differential Equations of Second Order, V2nd ed.