Aqueous emulsion of conductive polymer binders for Si anode materials in lithium ion batteries

被引:24
作者
Zheng, Tianyue [1 ]
Zhang, Ting [2 ]
de la Fuente, Mauricio Solis [1 ]
Liu, Gao [1 ]
机构
[1] Lawrence Berkeley Natl Lab, Energy Storage & Distributed Resources Div, 1 Cyclotron Rd, Berkeley, CA 94720 USA
[2] Beijing Inst Technol, Sch Opt & Photon, 5 South Zhongguancun St, Beijing 100081, Peoples R China
基金
中国国家自然科学基金;
关键词
Emulsion polymer; Conductive polymer binder; Silicon material; Lithium ion battery; CARBOXYMETHYL CELLULOSE; NEGATIVE ELECTRODES; SILICON ANODES; PERFORMANCE; GENERATION; LI;
D O I
10.1016/j.eurpolymj.2019.02.041
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
To combine the advantages of conductive polymer binders and aqueous battery electrode coating processes, a versatile emulsion polymerization method is developed to prepare conductive polymer binder emulsions in water for lithium ion battery applications. These polymer emulsions are used as-is as the binder for silicon containing anode materials. In the resulting electrodes, the binder particles and the active material particles are adhered through "point contact". Increasing the content of aromatic units in the polymer binders can improve the battery performance. After optimization of the material composition in the electrodes, the batteries can achieve about 880 mAh.g(-1) initial capacity for graphite/silicon composite materials at a ratio of 73/15 with about 75% capacity retention after 200 cycles.
引用
收藏
页码:265 / 270
页数:6
相关论文
共 23 条
[1]  
[Anonymous], 1940, CHEM ED, DOI DOI 10.1021/ED018P249.1
[2]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[3]   The Development and Future of Lithium Ion Batteries [J].
Blomgren, George E. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2017, 164 (01) :A5019-A5025
[4]   Stress generation and fracture in lithium insertion materials [J].
Christensen, J ;
Newman, J .
JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2006, 10 (05) :293-319
[5]   Toward Silicon Anodes for Next-Generation Lithium Ion Batteries: A Comparative Performance Study of Various Polymer Binders and Silicon Nanopowders [J].
Erk, Christoph ;
Brezesinski, Torsten ;
Sommer, Heino ;
Schneider, Reinhard ;
Janek, Juergen .
ACS APPLIED MATERIALS & INTERFACES, 2013, 5 (15) :7299-7307
[6]   Highly reversible lithium storage in nanostructured silicon [J].
Graetz, J ;
Ahn, CC ;
Yazami, R ;
Fultz, B .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2003, 6 (09) :A194-A197
[7]   Silicon/graphite composite electrodes for high-capacity anodes:: Influence of binder chemistry on cycling stability [J].
Hochgatterer, N. S. ;
Schweiger, M. R. ;
Koller, S. ;
Raimann, P. R. ;
Woehrle, T. ;
Wurm, C. ;
Winter, M. .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2008, 11 (05) :A76-A80
[8]   A new type of nano-sized silicon/carbon composite electrode for reversible lithium insertion [J].
Holzapfel, M ;
Buqa, H ;
Scheifele, W ;
Novák, P ;
Petrat, FM .
CHEMICAL COMMUNICATIONS, 2005, (12) :1566-1568
[9]   Effect of carboxymethyl cellulose on aqueous processing of natural graphite negative electrodes and their electrochemical performance for lithium batteries [J].
Lee, JH ;
Paik, U ;
Hackley, VA ;
Choi, YM .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2005, 152 (09) :A1763-A1769
[10]   An in situ X-ray diffraction study of the reaction of Li with crystalline Si [J].
Li, Jing ;
Dahn, J. R. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2007, 154 (03) :A156-A161