Discrete isoperimetric and Poincare-type inequalities

被引:40
作者
Bobkov, SG [1 ]
Götze, F
机构
[1] Syktyvkar State Univ, Dept Math, Syktyvkar 167001, Russia
[2] Univ Bielefeld, Dept Math, D-33501 Bielefeld, Germany
关键词
concentration of measure; isoperimetry; Poincare inequalities;
D O I
10.1007/s004400050225
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study some discrete isoperimetric and Poincare-type inequalities for product probability measures mu(n) on the discrete cube {0, 1}(n) and on the lattice Z(n). In particular we prove sharp lower estimates for the product measures of 'boundaries' of arbitrary sets in the discrete cube. More generally, we characterize those probability distributions mu on Z which satisfy these inequalities on Zn. The class of these distributions can be described by a certain class of monotone transforms of the two-sided exponential measure. A similar characterization of distributions on R which satisfy Poincare inequalities on the class of convex functions is proved in terms of variances of suprema of linear processes.
引用
收藏
页码:245 / 277
页数:33
相关论文
共 22 条
[1]   Edge-isoperimetric inequalities .1. Information-theoretical methods [J].
Ahlswede, R ;
Cai, N .
EUROPEAN JOURNAL OF COMBINATORICS, 1997, 18 (04) :355-372
[2]  
AHLSWEDE R, 1976, Z WAHRSCHEINLICHKEIT, V34, P157, DOI 10.1007/BF00535682
[3]   Levy-Gromov's isoperimetric inequality for an infinite dimensional diffusion generator [J].
Bakry, D ;
Ledoux, M .
INVENTIONES MATHEMATICAE, 1996, 123 (02) :259-281
[4]  
Bobkov SG, 1997, ANN PROBAB, V25, P206
[5]  
Bobkov SG, 1997, ANN PROBAB, V25, P184
[6]  
BOBKOV SG, 1996, PROBAB THEORY APPL, V41, P877
[7]   BRUNN-MINKOWSKI INEQUALITY IN GAUSS SPACE [J].
BORELL, C .
INVENTIONES MATHEMATICAE, 1975, 30 (02) :207-216
[8]  
BOROVKOV AA, 1983, THEOR PROBAB APPL, V28, P209
[9]  
CHEN LHY, 1991, CHARACTERIZATION PRO
[10]   A NOTE ON AN INEQUALITY INVOLVING THE NORMAL-DISTRIBUTION [J].
CHERNOFF, H .
ANNALS OF PROBABILITY, 1981, 9 (03) :533-535