Quantum monodromy in integrable systems

被引:75
作者
Ngoc, SV
机构
[1] Inst Fourier, UMR 5582, F-38402 St Martin Dheres, France
[2] Math Inst, NL-3508 TA Utrecht, Netherlands
关键词
D O I
10.1007/s002200050621
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Let P(1)(h),..., P(n)(h) be a set of commuting self-adjoint h-pseudo-differential operators on an n-dimensional manifold. If the joint principal symbol p is proper, it is known from the work of Colin de Verdiere [6] and Charbonnel [3] that in a neighbourhood of any regular value of p, the joint spectrum locally has the structure of an affine integral lattice. This leads to the construction of a natural invariant of the spectrum, called the quantum monodromy. We present this construction here, and show that this invariant is given by the classical monodromy of the underlying Liouville integrable system, as introduced by Duistermaat [9]. The most striking application of this result is that all two degree of freedom quantum integrable systems with a focus;focus singularity have the same nan-trivial quantum monodromy. For instance, this proves a conjecture of Cushman and Duistermaat [7] concerning the quantum spherical pendulum.
引用
收藏
页码:465 / 479
页数:15
相关论文
共 15 条
[1]   MONODROMY IN THE CHAMPAGNE BOTTLE [J].
BATES, LM .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1991, 42 (06) :837-847
[2]  
Berger M., 1977, Geometrie, V1
[3]  
Charbonnel A. M., 1988, ASYMPTOTIC ANAL, V1, P227, DOI DOI 10.3233/ASY-1988-1305
[4]   Quantum states in a champagne bottle [J].
Child, MS .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (02) :657-670
[5]  
CHILD MS, IN PRESS QUANTUM MON
[6]   THE QUANTUM-MECHANICAL SPHERICAL PENDULUM [J].
CUSHMAN, R ;
DUISTERMAAT, JJ .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1988, 19 (02) :475-479
[7]  
CUSHMAN R, 1997, NONHAMILTONIAN MONOD
[8]   ON GLOBAL ACTION-ANGLE COORDINATES [J].
DUISTERMAAT, JJ .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1980, 33 (06) :687-706
[9]  
Eliasson L.H., 1984, THESIS U STOCKHOLM
[10]   MONODROMY IN THE QUANTUM SPHERICAL PENDULUM [J].
GUILLEMIN, V ;
URIBE, A .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1989, 122 (04) :563-574