Givental Graphs and Inversion Symmetry

被引:21
作者
Dunin-Barkowski, Petr [1 ,2 ]
Shadrin, Sergey [1 ]
Spitz, Loek [1 ]
机构
[1] Univ Amsterdam, Korteweg de Vries Inst Math, NL-1090 GE Amsterdam, Netherlands
[2] ITEP, Moscow, Russia
关键词
Frobenius manifolds; Givental group action; inversion transformation; Feynman graphs; principal hierachies; EQUATIONS; COMMUTATIVITY; INVARIANCE;
D O I
10.1007/s11005-013-0606-9
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Inversion symmetry is a very non-trivial discrete symmetry of Frobenius manifolds. It was obtained by Dubrovin from one of the elementary Schlesinger transformations of a special ODE associated to a Frobenius manifold. In this paper, we review the Givental group action on Frobenius manifolds in terms of Feynman graphs and obtain an interpretation of the inversion symmetry in terms of the action of the Givental group. We also consider the implication of this interpretation of the inversion symmetry for the Schlesinger transformations and for the Hamiltonians of the associated principle hierarchy.
引用
收藏
页码:533 / 557
页数:25
相关论文
共 28 条
[1]  
[Anonymous], 2004, FROBENIUS MANIFOLDS, VE36, P91
[2]  
Buryak A., ARXIV11042722
[3]  
Buryak A., ARXIV10095351
[4]   A Remark on Deformations of Hurwitz Frobenius Manifolds [J].
Buryak, Alexandr ;
Shadrin, Sergey .
LETTERS IN MATHEMATICAL PHYSICS, 2010, 93 (03) :243-252
[5]   Symmetries of WDVV equations [J].
Chen, YJ ;
Kontsevich, M ;
Schwarz, A .
NUCLEAR PHYSICS B, 2005, 730 (03) :352-363
[6]   Bihamiltonian hierarchies in 2D topological field theory at one-loop approximation [J].
Dubrovin, B ;
Zhang, YJ .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1998, 198 (02) :311-361
[7]  
DUBROVIN B, 1993, PROG MATH, V115, P313
[8]  
DUBROVIN B., 1996, Montecatini Terme, 1993), Lecture Notes in Math., V1620, P120, DOI 10.1007/BFb0094793
[9]  
Dubrovin B., ARXIVMATH0108160V1
[10]  
FABER C., ARXIVMATH0612510