Classification of Single-Cell Gene Expression Trajectories from Incomplete and Noisy Data

被引:6
|
作者
Karbalayghareh, Alireza [1 ]
Braga-Neto, Ulisses [1 ]
Dougherty, Edward R. [1 ]
机构
[1] Texas A&M Univ, Dept Elect & Comp Engn, College Stn, TX 77843 USA
基金
美国国家科学基金会;
关键词
Gene regulatory network; probabilistic Boolean network; trajectory classification; Bayes classifier; expectation maximization; hidden Markov model; partially observed Boolean dynamical system; single-cell gene expression trajectory;
D O I
10.1109/TCBB.2017.2763946
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
This paper studies classification of gene-expression trajectories coming from two classes, healthy and mutated (cancerous) using Boolean networks with perturbation (BNps) to model the dynamics of each class at the state level. Each class has its own BNp, which is partially known based on gene pathways. We employ a Gaussian model at the observation level to show the expression values of the genes given the hidden binary states at each time point. We use expectation maximization (EM) to learn the BNps and the unknown model parameters, derive closed-form updates for the parameters, and propose a learning algorithm. After learning, a plug-in Bayes classifier is used to classify unlabeled trajectories, which can have missing data. Measuring gene expressions at different times yields trajectories only when measurements come from a single cell. In multiple-cell scenarios, the expression values are averages over many cells with possibly different states. Via the central-limit theorem, we propose another model for expression data in multiple-cell scenarios. Simulations demonstrate that single-cell trajectory data can outperform multiple-cell average expression data relative to classification error, especially in high-noise situations. We also consider data generated via a mammalian cell-cycle network, both the wild-type and with a common mutation affecting p27.
引用
收藏
页码:193 / 207
页数:15
相关论文
共 50 条
  • [21] Wishbone identifies bifurcating developmental trajectories from single-cell data
    Manu Setty
    Michelle D Tadmor
    Shlomit Reich-Zeliger
    Omer Angel
    Tomer Meir Salame
    Pooja Kathail
    Kristy Choi
    Sean Bendall
    Nir Friedman
    Dana Pe'er
    Nature Biotechnology, 2016, 34 : 637 - 645
  • [22] Wishbone identifies bifurcating developmental trajectories from single-cell data
    Setty, Manu
    Tadmor, Michelle D.
    Reich-Zeliger, Shlomit
    Ange, Omer
    Salame, Tomer Meir
    Kathail, Pooja
    Choi, Kristy
    Bendall, Sean
    Friedman, Nir
    Pe'er, Dana
    NATURE BIOTECHNOLOGY, 2016, 34 (06) : 637 - 645
  • [23] Gene-level alignment of single-cell trajectories
    Sumanaweera, Dinithi
    Suo, Chenqu
    Cujba, Ana-Maria
    Muraro, Daniele
    Dann, Emma
    Polanski, Krzysztof
    Steemers, Alexander S.
    Lee, Woochan
    Oliver, Amanda J.
    Park, Jong-Eun
    Meyer, Kerstin B.
    Dumitrascu, Bianca
    Teichmann, Sarah A.
    NATURE METHODS, 2025, 22 (01) : 68 - 81
  • [24] Selecting gene features for unsupervised analysis of single-cell gene expression data
    Sheng, Jie
    Li, Wei Vivian
    BRIEFINGS IN BIOINFORMATICS, 2021, 22 (06)
  • [25] Single-cell gene expression analysis
    Richardson, PJ
    Lee, K
    RADIATION RESEARCH, 2001, 156 (04) : 435 - 435
  • [26] Single-cell gene expression profiling
    Levsky, JM
    Shenoy, SM
    Pezo, RC
    Singer, RH
    SCIENCE, 2002, 297 (5582) : 836 - 840
  • [27] Dynamics of single-cell gene expression
    Longo, Diane
    Hasty, Jeff
    MOLECULAR SYSTEMS BIOLOGY, 2006, 2 (1)
  • [28] scLink: Inferring Sparse Gene Co-expression Networks from Single-cell Expression Data
    Li, Wei Vivian
    Li, Yanzeng
    GENOMICS PROTEOMICS & BIOINFORMATICS, 2021, 19 (03) : 475 - 492
  • [29] scLink: Inferring Sparse Gene Co-expression Networks from Single-cell Expression Data
    Wei Vivian Li
    Yanzeng Li
    Genomics,Proteomics & Bioinformatics, 2021, (03) : 475 - 492
  • [30] Quantification of cell identity from single-cell gene expression profiles
    Idan Efroni
    Pui-Leng Ip
    Tal Nawy
    Alison Mello
    Kenneth D Birnbaum
    Genome Biology, 16