Polynomial reproduction by symmetric subdivision schemes

被引:76
作者
Dyn, Nira [2 ]
Hormann, Kai [1 ]
Sabin, Malcolm A. [3 ]
Shen, Zuowei [4 ]
机构
[1] Tech Univ Clausthal, Dept Informat, Clausthal Zellerfeld, Germany
[2] Tel Aviv Univ, Sch Math Sci, Tel Aviv, Israel
[3] Univ Cambridge, Comp Lab, Cambridge CB2 1TN, England
[4] Natl Univ Singapore, Dept Math, Singapore 117548, Singapore
关键词
Subdivision schemes; Polynomial reproduction; Polynomial generation; Approximation order; Quasi-interpolation;
D O I
10.1016/j.jat.2008.04.008
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We first present necessary and sufficient conditions for a linear, binary, Uniform, and stationary Subdivision scheme to have polynomial reproduction of degree d and thus approximation order d + 1. Our conditions are partly algebraic and easy to check by considering the symbol of a subdivision scheme, but also relate to the parameterization of the scheme. After discussing some special properties that hold for symmetric schemes, We then use our conditions to derive the maximum degree of polynomial reproduction for two families of symmetric schemes, the family of pseudo-splines and a new family of dual pseudo-splines. (C) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:28 / 42
页数:15
相关论文
共 14 条
[1]  
CAVARETTA AS, 1991, MEM AM MATH SOC, V93, P1
[2]   Stationary subdivision schemes reproducing polynomials [J].
Choi, SW ;
Lee, BG ;
Lee, YJ ;
Yoon, J .
COMPUTER AIDED GEOMETRIC DESIGN, 2006, 23 (04) :351-360
[3]   Framelets: MRA-based constructions of wavelet frames [J].
Daubechies, I ;
Han, B ;
Ron, A ;
Shen, ZW .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2003, 14 (01) :1-46
[4]   SYMMETRIC ITERATIVE INTERPOLATION PROCESSES [J].
DESLAURIERS, G ;
DUBUC, S .
CONSTRUCTIVE APPROXIMATION, 1989, 5 (01) :49-68
[5]   Construction of biorthogonal wavelets from pseudo-splines [J].
Dong, B ;
Shen, ZW .
JOURNAL OF APPROXIMATION THEORY, 2006, 138 (02) :211-231
[6]   Pseudo-splines, wavelets and framelets [J].
Dong, Bin ;
Shen, Zuowei .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2007, 22 (01) :78-104
[7]   Linear independence of pseudo-splines [J].
Dong, Bin ;
Shen, Zuowei .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2006, 134 (09) :2685-2694
[8]  
DYN N, 1990, INT S NUM M, V94, P91
[9]  
Dyn N, 2002, ACT NUMERIC, V11, P73, DOI 10.1017/S0962492902000028
[10]  
Dyn N., 1992, ADV NUMERICAL ANAL, VII, P36