Prediction of two-dimensional CP3 as a promising electrode material with a record-high capacity for Na ions

被引:21
作者
Cheng, Zishuang [1 ]
Zhang, Xiaoming [1 ,2 ]
Zhang, Hui [1 ]
Gao, Jianbo [3 ]
Liu, Heyan [1 ,2 ]
Yu, Xiao [1 ,2 ]
Dai, Xuefang [1 ]
Liu, Guodong [1 ]
Chen, Guifeng [1 ]
机构
[1] Hebei Univ Technol, Sch Mat Sci & Engn, Tianjin 300130, Peoples R China
[2] Baotou Res Inst Rare Earths, State Key Lab Baiyunobo Rare Earth Resource Res &, Baotou 014030, Peoples R China
[3] Ctr Excellence Adv Mat, Dongguan 523808, Peoples R China
来源
NANOSCALE ADVANCES | 2020年 / 2卷 / 11期
基金
中国国家自然科学基金;
关键词
HIGH CARRIER MOBILITY; GENERALIZED GRADIENT APPROXIMATION; LITHIUM-ION; ANODE MATERIAL; LI-ION; THEORETICAL PREDICTION; SEMICONDUCTOR SNP3; ENERGY-STORAGE; MONOLAYER; BATTERIES;
D O I
10.1039/d0na00746c
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Borophene with a maximum Li/Na capacity of 1984 mA h g(-1) (nanoscale 2016, 8, 15 340-15 347) has shown the highest capacity among two-dimensional (2-D) anode materials identified so far. Herein, we report the record break for Na-ion using a newly proposed 2-D material, namely, CP3. We fully investigated Li- and Na-ion adsorption and diffusion processes on a CP3 monolayer. We found that the material can enable stable Li/Na adsorption considering charge accumulation on CP3 surfaces. The ion diffusion barriers for Li and Na were identified to be 98 meV and 356 meV, respectively. These values were comparable or smaller than those of the typical high-capacity electrode materials such as borophene. Most remarkably, the maximum Na capacity in CP3 monolayer can reach up to 2298.9 mA h g(-1), which breaks the value recorded using borophene (1984 mA h g(-1)). Our work highly promises that the 2-D CP3 material could serve as an outstanding electrode material for Na-ion batteries with an extremely high storage capacity.
引用
收藏
页码:5271 / 5279
页数:9
相关论文
共 76 条
[1]   Synthesis of Surface-Functionalized WS2 Nanosheets and Performance as Li-Ion Battery Anodes [J].
Bhandavat, R. ;
David, L. ;
Singh, G. .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2012, 3 (11) :1523-1530
[2]   Mo2C as a high capacity anode material: a first-principles study [J].
Cakir, Deniz ;
Sevik, Cem ;
Gulseren, Oguz ;
Peeters, Francois M. .
JOURNAL OF MATERIALS CHEMISTRY A, 2016, 4 (16) :6029-6035
[3]   Progress in electrical energy storage system: A critical review [J].
Chen, Haisheng ;
Cong, Thang Ngoc ;
Yang, Wei ;
Tan, Chunqing ;
Li, Yongliang ;
Ding, Yulong .
PROGRESS IN NATURAL SCIENCE-MATERIALS INTERNATIONAL, 2009, 19 (03) :291-312
[4]   Si-based anode with hierarchical protective function and hollow ring-like carbon matrix for high performance lithium ion batteries [J].
Chen, Hedong ;
Shen, Kaixiang ;
Hou, Xianhua ;
Zhang, Guangzu ;
Wang, Shaofeng ;
Chen, Fuming ;
Fu, Lijun ;
Qin, Haiqing ;
Xia, Yingchun ;
Zhou, Guofu .
APPLIED SURFACE SCIENCE, 2019, 470 :496-506
[5]   MECHANISMS FOR LITHIUM INSERTION IN CARBONACEOUS MATERIALS [J].
DAHN, JR ;
ZHENG, T ;
LIU, YH ;
XUE, JS .
SCIENCE, 1995, 270 (5236) :590-593
[6]   Defective Graphene as a High-Capacity Anode Material for Na- and Ca-Ion Batteries [J].
Datta, Dibakar ;
Li, Junwen ;
Shenoy, Vivek B. .
ACS APPLIED MATERIALS & INTERFACES, 2014, 6 (03) :1788-1795
[7]   Two-Dimensional MnO2 as a Better Cathode Material for Lithium Ion Batteries [J].
Deng, Shuo ;
Wang, Lu ;
Hou, Tingjun ;
Li, Youyong .
JOURNAL OF PHYSICAL CHEMISTRY C, 2015, 119 (52) :28783-28788
[8]   Two-Dimensional GeP3 as a High Capacity Anode Material for Non-Lithium-Ion Batteries [J].
Deng, Xiaoyu ;
Chen, Xianfei ;
Huang, Yi ;
Xiao, Beibei ;
Du, Haiying .
JOURNAL OF PHYSICAL CHEMISTRY C, 2019, 123 (08) :4721-4728
[9]  
Donohue P., 1970, J. Solid State Chem., V1, P143, DOI DOI 10.1016/0022-4596(70)90005-8
[10]   Hybrid energy storage: the merging of battery and supercapacitor chemistries [J].
Dubal, D. P. ;
Ayyad, O. ;
Ruiz, V. ;
Gomez-Romero, P. .
CHEMICAL SOCIETY REVIEWS, 2015, 44 (07) :1777-1790