Robust model selection in regression via weighted likelihood methodology

被引:29
作者
Agostinelli, C [1 ]
机构
[1] Univ Ca Foscari Venice, Dept Stat, I-30125 Venice, Italy
关键词
Akaike information criterion; mallows Cp; robust model selection; weighted likelihood;
D O I
10.1016/S0167-7152(01)00193-6
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Robust model selection procedures are introduced as a robust modification of the Akaike information criterion (AIC) and Mallows Cp. These extensions are based on the weighted likelihood methodology. When the model is correctly specified, these robust criteria are asymptotically equivalent to the classical ones under mild conditions. Robustness properties and the performance of the procedures are illustrated with examples and Monte Carlo simulations. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:289 / 300
页数:12
相关论文
共 24 条
[1]   A one-step robust estimator for regression based on the weighted likelihood reweighting scheme [J].
Agostinelli, C ;
Markatou, M .
STATISTICS & PROBABILITY LETTERS, 1998, 37 (04) :341-350
[2]  
Agostinelli C, 2001, STAT SINICA, V11, P499
[3]  
AGOSTINELLI C, 1998, THESIS U PADOVA PADO
[4]  
AGOSTINELLI C, 1998, P 39 RIUN SCI SIS SO
[5]  
AGOSTINELLI C, 2001, UNPUB STATISTICA
[6]  
AGOSTINELLI C, 1997, 16 U PAD DEP STAT
[7]  
Akaike H, 1973, 2 INT S INFORM THEOR, P199, DOI [10.1007/978-1-4612-1694-0_15, 10.1007/978-1-4612-1694-0]
[8]  
[Anonymous], 1990, SUBSET SELECTION REG, DOI DOI 10.1007/978-1-4899-2939-6
[9]  
BHANSALI RJ, 1977, BIOMETRIKA, V64, P547, DOI 10.1093/biomet/64.3.547
[10]  
HAMPEL FR, 1983, P 44 SESS ISI MADR, P767