Discriminative Features for Interictal Epileptic Discharges in Intracerebral EEG Signals

被引:0
作者
Cheng, CheeChian [1 ]
Bai, Yang [1 ]
Cheng, Jie
Soltanian-Zadeh, Hamid
Cheng, Qiang [1 ]
机构
[1] So Illinois Univ, Dept Comp Sci, Carbondale, IL 62901 USA
来源
2012 5TH INTERNATIONAL CONGRESS ON IMAGE AND SIGNAL PROCESSING (CISP) | 2012年
关键词
Feature selection; IED; EEG; MRF; classification; student t-distribution based GARCH model;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper extracts features and selects the most discriminate feature subset for classifying interictal epileptic discharge periods (IED) from non-IED periods in intracerebral EEG (iEEG) signals. Generalized autoregressive conditional heteroscedasticity (GARCH) model based on the student t-distribution is used to describe the wavelet coefficients of the iEEG signals. A variety of features are extracted from the coefficients of GARCH models. The Markov random field (MRF) based feature subset selection method is used to select the most discriminative features. Experimental results on real patients' data validate the effectiveness of the selected features.
引用
收藏
页码:1791 / 1795
页数:5
相关论文
共 50 条
  • [21] Epileptic Seizure Detection in EEG Signals Using Discriminative Stein Kernel-Based Sparse Representation
    Lei, Chang
    Zheng, Shuzhen
    Zhang, Xuan
    Wang, Dixin
    Wu, Hongtong
    Peng, Hong
    Hu, Bin
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2022, 71
  • [22] Automatic Diagnosis of Epileptic Seizures in EEG Signals Using Fractal Dimension Features and Convolutional Autoencoder Method
    Malekzadeh, Anis
    Zare, Assef
    Yaghoobi, Mahdi
    Alizadehsani, Roohallah
    BIG DATA AND COGNITIVE COMPUTING, 2021, 5 (04)
  • [23] The Automatic Detection of Epileptic Seizures Based on EEG Signals Processing: Investigation of Different Features and Classification Algorithms
    Tautan, Alexandra-Maria
    Mandruta, Ioana
    Bajenaru, Ovidiu-Alexandru
    Strungaru, Rodica
    Taralunga, Dragos
    Hurezeanu, Bogdan
    Neagu , G. Mihaela
    WORLD CONGRESS ON MEDICAL PHYSICS AND BIOMEDICAL ENGINEERING 2018, VOL 2, 2019, 68 (02): : 393 - 397
  • [24] The slow-wave component of the interictal epileptiform EEG discharges
    Terney, Daniella
    Alving, Jorgen
    Skaarup, Christian N.
    Wolf, Peter
    Beniczky, Sandor
    EPILEPSY RESEARCH, 2010, 90 (03) : 228 - 233
  • [25] fNIRS-EEG study of focal interictal epileptiform discharges
    Peng, Ke
    Nguyen, Dang Khoa
    Tayah, Tania
    Vannasing, Phetsamone
    Tremblay, Julie
    Sawan, Mohamad
    Lassonde, Maryse
    Lesage, Frederic
    Pouliot, Philippe
    EPILEPSY RESEARCH, 2014, 108 (03) : 491 - 505
  • [26] Manifestation of Hippocampal Interictal Discharges on Clinical Scalp EEG Recordings
    Lee, Somin
    Wu, Shasha
    Tao, James X.
    Rose, Sandra
    Warnke, Peter C.
    Issa, Naoum P.
    van Drongelen, Wim
    JOURNAL OF CLINICAL NEUROPHYSIOLOGY, 2023, 40 (02) : 144 - 150
  • [27] Bispectral Analysis of Epileptic EEG signals
    Sezgin, Necmettin
    Tagluk, M. Emin
    Ertugrul, O. Faruk
    Kaya, Yilmaz
    2013 21ST SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2013,
  • [28] Secondary bilateral synchronization of interictal EEG discharges in focal epilepsy: prevalence and associated factors
    Specktor, Polina
    Spierer, Ronen
    Katson, Mark
    Herskovitz, Moshe
    FRONTIERS IN NEUROLOGY, 2025, 16
  • [29] A comprehensive comparison of handcrafted features and convolutional autoencoders for epileptic seizures detection in EEG signals
    Shoeibi, Afshin
    Ghassemi, Navid
    Alizadehsani, Roohallah
    Rouhani, Modjtaba
    Hosseini-Nejad, Hossein
    Khosravi, Abbas
    Panahiazar, Maryam
    Nahavandi, Saeid
    EXPERT SYSTEMS WITH APPLICATIONS, 2021, 163
  • [30] Entropy based features in FAWT framework for automated detection of epileptic seizure EEG signals
    Tanveer, M.
    Pachori, R. B.
    Angami, N., V
    2018 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI), 2018, : 1946 - 1952