ZnS/ZnO heterojunction as photoelectrode: Type H band alignment towards enhanced photoelectrochemical performance

被引:101
作者
Guo, Penghui [1 ]
Jiang, Jiangang [1 ]
Shen, Shaohua [1 ]
Guo, Liejin [1 ]
机构
[1] Xi An Jiao Tong Univ, Int Res Ctr Renewable Energy, State Key Lab Multiphase Flow Power Engn, Xian 710049, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
ZnS/ZnO heterojunction; Electron injection; PEC; ZNO; NANOWIRES; EFFICIENT; ZNO/ZNS; PHOTOLUMINESCENCE; NANOSTRUCTURES; NANOCABLES; MISMATCH; DEFECTS; FILMS;
D O I
10.1016/j.ijhydene.2013.01.184
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Heterojunction structures are attracting lots of attention for enhancing the electron injection across the interface. The ZnS/ZnO one-dimensional heterojunction film was firstly prepared via a chemical sulfidization following hydrothermal reaction. The heterostructure was characterized as ZnS(blende)/ZnO(wurtzite) shell-core nanorods via XRD, SEM and TEM. A type II band alignment structure of ZnS/ZnO composite was synthesized via a temperate condition proved by PLS and XPS. The values for valence band offset (VBO) and conduction band offset (CBO) were calculated to be 0.96 eV and 1.25 eV, respectively. The special electron structure in the heterojunction helped reduce the energy barrier height at the interface and enhance the separation of photo-generated carriers. Thus, the photoelectrochemical performance was highly improved, and a photocurrent density of 380 mu A/cm(2) at 0.9 V (vs. Ag/AgCl) was obtained. Copyright (C) 2013, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:13097 / 13103
页数:7
相关论文
共 40 条
[11]   BANDGAP AND TRANSPORT-PROPERTIES OF SI1-XGEX BY ANALYSIS OF NEARLY IDEAL SI/SI1-XGEX/SI HETEROJUNCTION BIPOLAR-TRANSISTORS [J].
KING, CA ;
HOYT, JL ;
GIBBONS, JF .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 1989, 36 (10) :2093-2104
[12]   HETEROSTRUCTURE BIPOLAR-TRANSISTORS AND INTEGRATED-CIRCUITS [J].
KROEMER, H .
PROCEEDINGS OF THE IEEE, 1982, 70 (01) :13-25
[13]  
Li JH, 2006, J PHYS CHEM B, V110, P14685, DOI 10.1021/jp0615631
[14]   Type-II heterojunction organic/inorganic hybrid non-volatile memory based on FeS2 nanocrystals embedded in poly(3-hexylthiophene) [J].
Lin, C. W. ;
Wang, D. Y. ;
Tai, Y. ;
Jiang, Y. T. ;
Chen, M. C. ;
Chen, C. C. ;
Yang, Y. J. ;
Chen, Y. F. .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2011, 44 (29)
[15]  
MATTHEWS JW, 1974, J CRYST GROWTH, V27, P118, DOI 10.1016/S0022-0248(74)80055-2
[16]   Optical emission of biaxial ZnO-ZnS nanoribbon heterostructures [J].
Murphy, M. W. ;
Zhou, X. T. ;
Ko, J. Y. P. ;
Zhou, J. G. ;
Heigl, F. ;
Sham, T. K. .
JOURNAL OF CHEMICAL PHYSICS, 2009, 130 (08)
[17]   Biaxial ZnO-ZnS Nanoribbon Heterostructures [J].
Murphy, Michael W. ;
Kim, P. S. Grace ;
Zhou, Xingtai ;
Zhou, Jigang ;
Coulliard, Martin ;
Botton, Gianluigi A. ;
Sham, Tsun-Kong .
JOURNAL OF PHYSICAL CHEMISTRY C, 2009, 113 (12) :4755-4757
[18]   Band offset of high efficiency CBD-ZnS/CIGS thin film solar cells [J].
Nakada, T ;
Hongo, M ;
Hayashi, E .
THIN SOLID FILMS, 2003, 431 :242-248
[19]   CALCULATION OF CRITICAL LAYER THICKNESS VERSUS LATTICE MISMATCH FOR GEXSI1-X/SI STRAINED-LAYER HETEROSTRUCTURES [J].
PEOPLE, R ;
BEAN, JC .
APPLIED PHYSICS LETTERS, 1985, 47 (03) :322-324
[20]  
Saravanakumar K., 2011, Advanced Studies in Theoretical Physics, V5, P155