On poly-Bell numbers and polynomials

被引:0
作者
Guettai, Ghania [1 ]
Laissaoui, Diffalah [2 ]
Rahmani, Mourad [1 ]
Sebaoui, Madjid [2 ]
机构
[1] USTHB, Fac Math, BP 32, Algiers 16111, Algeria
[2] Dr Yahia Fares Univ Medea, Medea 26000, Algeria
关键词
Bell numbers and polynomials; Bernoulli polynomials; generating function; probabilistic representation; Stirling numbers;
D O I
10.2989/16073606.2020.1805039
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper aims to construct a new family of numbers and polynomials which are related to the Bell numbers and polynomials by means of the confluent hypergeometric function. We give various properties of these numbers and polynomials (generating functions, explicit formulas, integral representations, recurrence relations, probabilistic representation, horizontal ellipsis ). We also derive some combinatorial sums including the generalized Bernoulli polynomials, lower incomplete gamma function, generalized Bell polynomials. Finally, by applying Cauchy formula for repeated integration, we introduce poly-Bell numbers and polynomials.
引用
收藏
页码:1463 / 1483
页数:21
相关论文
共 19 条
  • [1] [Anonymous], 1885, NOUV ANN
  • [2] Arakawa T, 2014, SPRINGER MONOGR MATH, P1, DOI 10.1007/978-4-431-54919-2_1
  • [3] Askey R., 1999, Special Functions, V71, DOI DOI 10.1017/CBO9781107325937
  • [4] BERNDT B. C, 1985, Ramanujan's Notebooks: Part 1
  • [5] Explicit Formulas Associated with Some Families of Generalized Bernoulli and Euler Polynomials
    Boutiche, M. A.
    Rahmani, M.
    Srivastava, H. M.
    [J]. MEDITERRANEAN JOURNAL OF MATHEMATICS, 2017, 14 (02)
  • [6] THE R-STIRLING NUMBERS
    BRODER, AZ
    [J]. DISCRETE MATHEMATICS, 1984, 49 (03) : 241 - 259
  • [7] CARLITZ L, 1980, FIBONACCI QUART, V18, P147
  • [8] Comtet L., 1974, Advanced Combinatorics: The Art of Finite and Infinite Expansions
  • [9] On Generalized Bell Polynomials
    Corcino, Roberto B.
    Corcino, Cristina B.
    [J]. DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2011, 2011
  • [10] Graham R.L., 1994, Concrete mathematics, Vsecond