Existence of positive solutions for systems of second order multi-point boundary value problems on time scales

被引:0
作者
Prasad, K. R. [1 ]
Sreedhar, N. [2 ]
Srinivas, M. A. S. [3 ]
机构
[1] Andhra Univ, Dept Appl Math, Visakhapatnam 530003, Andhra Pradesh, India
[2] GITAM Univ, Dept Math, Visakhapatnam 530045, Andhra Pradesh, India
[3] JNTU, Dept Math, Hyderabad 500085, Andhra Pradesh, India
来源
PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES | 2015年 / 125卷 / 03期
关键词
Green's function; system; boundary value problem; time scale; m-point; positive solution; cone; STURM-LIOUVILLE OPERATOR; MEASURE CHAIN; EIGENVALUE PROBLEMS; KIND;
D O I
10.1007/s12044-015-0238-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we establish the existence of positive solutions for systems of second order multi-point boundary value problems on time scales by applying Guo- Krasnosel'skii fixed point theorem.
引用
收藏
页码:353 / 370
页数:18
相关论文
共 20 条
[1]  
Agarwal R.P., 1999, Results Math, V35, P3, DOI [10.1007/BF03322019, DOI 10.1007/BF03322019]
[2]   Sturm-Liouville eigenvalue problems on time scales [J].
Agarwal, RP ;
Bohner, M ;
Wong, PJY .
APPLIED MATHEMATICS AND COMPUTATION, 1999, 99 (2-3) :153-166
[3]  
ANDERSON D. R., 2005, COMMUN APPL NONLINEA, V12, P1
[4]   Eigenvalue intervals for a two-point boundary value problem on a measure chain [J].
Anderson, DR .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2002, 141 (1-2) :57-64
[5]  
ANDERSON DR, 2002, INT J NONLIN DIFFERE, V7, P97
[6]  
[Anonymous], 1964, Positive Solutions of Operator Equations
[7]  
Benchohra M., 2007, ADV DIFFER EQU-NY, V2007, P1
[8]  
Bohner M., 2001, Dynamic Equations on Time Scales: An Introduction With Applications, DOI [10.1007/978-1-4612-0201-1, DOI 10.1007/978-1-4612-0201-1]
[9]  
Bohner M., 2003, ADV DYNAMIC EQUATION, DOI DOI 10.1007/978-0-8176-8230-9
[10]  
Chyan C.J., 1998, Electron. J. Differential Eqns, V1998, P1