Determination of principal component analysis models for sensor fault detection and isolation

被引:28
作者
Benaicha, Anissa [1 ]
Mourot, Gilles [2 ]
Benothman, Kamel [3 ]
Ragot, Jose [2 ]
机构
[1] Natl Engn Sch Monastir, Res Unit ATSI, Monastir 5019, Tunisia
[2] Univ Lorraine, CRAN, UMR 7039, CNRS, F-54516 Vandoeuvre Les Nancy, France
[3] Natl Engn Sch Tunis, Res Unit LARA Automat, Tunis 1002, Belvedere, Tunisia
关键词
Fault detection and isolation; number of principal components; PCA; sensor fault; variable reconstruction; RECONSTRUCTION; PCA; IDENTIFICATION; SENSITIVITY; NUMBER;
D O I
10.1007/s12555-012-0142-x
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, a new method for determining the Principal Component Analysis (PCA) model structure for system diagnosis is proposed. This method, based on the variables reconstruction principle, determines the PCA model optimizing detection and isolation of single or multiple faults affecting redundant or non redundant variables of a system. This new method has been validated by a simulation example.
引用
收藏
页码:296 / 305
页数:10
相关论文
共 16 条
[1]  
Benaicha A., 2010, P 18 MED C CONTR AUT
[2]   Subspace method aided data-driven design of fault detection and isolation systems [J].
Ding, S. X. ;
Zhang, P. ;
Naik, A. ;
Ding, E. L. ;
Huang, B. .
JOURNAL OF PROCESS CONTROL, 2009, 19 (09) :1496-1510
[3]   Subspace approach to multidimensional fault identification and reconstruction [J].
Dunia, R ;
Qin, SJ .
AICHE JOURNAL, 1998, 44 (08) :1813-1831
[4]  
Harkat M. F., 2002, P C INT FRANC AUT CI
[5]   An improved PCA scheme for sensor FDI: Application to an air quality monitoring network [J].
Harkat, MF ;
Mourot, G ;
Ragot, J .
JOURNAL OF PROCESS CONTROL, 2006, 16 (06) :625-634
[6]   Sensor and actuator fault isolation by structured partial PCA with nonlinear extensions [J].
Huang, Y ;
Gertler, J ;
McAvoy, TJ .
JOURNAL OF PROCESS CONTROL, 2000, 10 (05) :459-469
[7]  
Jiang N., 2004, P IEEE INT C SYST MA
[8]   Comparison of multivariate statistical process monitoring methods with applications to the Eastman challenge problem [J].
Kano, M ;
Nagao, K ;
Hasebe, S ;
Hashimoto, I ;
Ohno, H ;
Strauss, R ;
Bakshi, BR .
COMPUTERS & CHEMICAL ENGINEERING, 2002, 26 (02) :161-174
[9]   Multivariate SPC methods for process and product monitoring [J].
Kourti, T ;
MacGregor, JF .
JOURNAL OF QUALITY TECHNOLOGY, 1996, 28 (04) :409-428
[10]   Statistical process monitoring: basics and beyond [J].
Qin, SJ .
JOURNAL OF CHEMOMETRICS, 2003, 17 (8-9) :480-502