ScePT: Scene-consistent, Policy-based Trajectory Predictions for Planning

被引:42
作者
Chen, Yuxiao [1 ]
Ivanovic, Boris [1 ]
Pavone, Marco [1 ,2 ]
机构
[1] NVIDIA Res, Santa Clara, CA 95051 USA
[2] Stanford Univ, Stanford, CA 94305 USA
来源
2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022) | 2022年
关键词
BEHAVIOR;
D O I
10.1109/CVPR52688.2022.01659
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Trajectory prediction is a critical functionality of autonomous systems that share environments with uncontrolled agents, one prominent example being self-driving vehicles. Currently, most prediction methods do not enforce scene consistency, i.e., there are a substantial amount of self-collisions between predicted trajectories of different agents in the scene. Moreover, many approaches generate individual trajectory predictions per agent instead of joint trajectory predictions of the whole scene, which makes downstream planning difficult. In this work, we present ScePT, a policy planning-based trajectory prediction model that generates accurate, scene-consistent trajectory predictions suitable for autonomous system motion planning. It explicitly enforces scene consistency and learns an agent interaction policy that can be used for conditional prediction. Experiments on multiple real-world pedestrians and autonomous vehicle datasets show that ScePT matches current state-of-the-art prediction accuracy with significantly improved scene consistency. We also demonstrate ScePT's ability to work with a downstream contingency planner.
引用
收藏
页码:17082 / 17091
页数:10
相关论文
共 52 条
[1]  
Abbeel P, 2006, J MACH LEARN RES, V7, P1743
[2]   Social LSTM: Human Trajectory Prediction in Crowded Spaces [J].
Alahi, Alexandre ;
Goel, Kratarth ;
Ramanathan, Vignesh ;
Robicquet, Alexandre ;
Li Fei-Fei ;
Savarese, Silvio .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :961-971
[3]   Contingency Model Predictive Control for Automated Vehicles [J].
Alsterda, John P. ;
Brown, Matthew ;
Gerdes, J. Christian .
2019 AMERICAN CONTROL CONFERENCE (ACC), 2019, :717-722
[4]  
[Anonymous], 2018, arXiv preprint arXiv:1812.03079
[5]  
Batra D, 2012, LECT NOTES COMPUT SC, V7576, P1, DOI 10.1007/978-3-642-33715-4_1
[6]   Fast unfolding of communities in large networks [J].
Blondel, Vincent D. ;
Guillaume, Jean-Loup ;
Lambiotte, Renaud ;
Lefebvre, Etienne .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2008,
[7]   nuScenes: A multimodal dataset for autonomous driving [J].
Caesar, Holger ;
Bankiti, Varun ;
Lang, Alex H. ;
Vora, Sourabh ;
Liong, Venice Erin ;
Xu, Qiang ;
Krishnan, Anush ;
Pan, Yu ;
Baldan, Giancarlo ;
Beijbom, Oscar .
2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2020), 2020, :11618-11628
[8]  
Caesar Holger, 2020, IEEE CVF C COMP VIS, P11621
[9]   Implicit Latent Variable Model for Scene-Consistent Motion Forecasting [J].
Casas, Sergio ;
Gulino, Cole ;
Suo, Simon ;
Luo, Katie ;
Liao, Renjie ;
Urtasun, Raquel .
COMPUTER VISION - ECCV 2020, PT XXIII, 2020, 12368 :624-641
[10]   The Importance of Prior Knowledge in Precise Multimodal Prediction [J].
Casas, Sergio ;
Gulino, Cole ;
Suo, Simon ;
Urtasun, Raquel .
2020 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2020, :2295-2302