Fractional electromagnetic waves in plasma and dielectric media with Caputo generalized fractional derivative

被引:0
|
作者
Bhangale, N. [1 ]
Kachhia, K. B. [1 ]
机构
[1] Charotar Univ Sci & Technol, PD Patel Inst Appl Sci, Dept Math Sci, Anand 388421, Gujarat, India
关键词
Wave propagation; fractional Maxwell equations; fractional wave equation; Caputo generalized fractional derivative; Mittag-Leffler function; fractional space-time components; CALCULUS; PROPAGATION;
D O I
10.31349/RevMexFis.66.848
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The wave equation has in important role in many areas of physics. This paper addresses the solution of fractional differential equations of electromagnetic waves in plasma and dielectric media with Caputo generalized fractional derivatives. The rho-Laplace transform introduced by Fahd and Thabet was used to obtain the analytic solution of fractional differential equations arising in electromagnetism. We investigate that the wave equation in fractional space can effectively describe the behavior of spatial and time waves. The results show that the electromagnetic fields change with different fractional orders.
引用
收藏
页码:848 / 855
页数:8
相关论文
共 50 条
  • [41] Initialization issues of the Caputo fractional derivative
    Achar, B. N. Narahari
    Lorenzo, Carl F.
    Hartley, Tom T.
    Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Vol 6, Pts A-C, 2005, : 1449 - 1456
  • [42] A new fractional integral associated with the Caputo–Fabrizio fractional derivative
    M. Moumen Bekkouche
    H. Guebbai
    M. Kurulay
    S. Benmahmoud
    Rendiconti del Circolo Matematico di Palermo Series 2, 2021, 70 : 1277 - 1288
  • [43] Generalized Caputo Type Fractional Inequalities
    Anastassiou, George A.
    INTELLIGENT MATHEMATICS II: APPLIED MATHEMATICS AND APPROXIMATION THEORY, 2016, 441 : 423 - 454
  • [44] Dynamical Analysis of Generalized Tumor Model with Caputo Fractional-Order Derivative
    Padder, Ausif
    Almutairi, Laila
    Qureshi, Sania
    Soomro, Amanullah
    Afroz, Afroz
    Hincal, Evren
    Tassaddiq, Asifa
    FRACTAL AND FRACTIONAL, 2023, 7 (03)
  • [45] Generalized natural boundary conditions for fractional variational problems in terms of the Caputo derivative
    Malinowska, Agnieszka B.
    Torres, Delfim F. M.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2010, 59 (09) : 3110 - 3116
  • [46] On the generalized fractional derivatives and their Caputo modification
    Jarad, Fahd
    Abdeljawad, Thabet
    Baleanu, Dumitru
    JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2017, 10 (05): : 2607 - 2619
  • [47] Caputo generalized ψ-fractional integral inequalities
    Anastassiou, George A.
    JOURNAL OF APPLIED ANALYSIS, 2021, 27 (01) : 107 - 120
  • [48] Controllability of nonlinear fractional Langevin systems using ?-Caputo fractional derivative
    Prabu, D.
    Kumar, P. Suresh
    Annapoorani, N.
    INTERNATIONAL JOURNAL OF DYNAMICS AND CONTROL, 2024, 12 (01) : 190 - 199
  • [49] Fractional investigation of bank data with fractal-fractional Caputo derivative
    Li, Zhongfei
    Liu, Zhuang
    Khan, Muhammad Altaf
    CHAOS SOLITONS & FRACTALS, 2020, 131
  • [50] Evolution equations with fractional Gross Laplacian and Caputo time fractional derivative
    Abdeljabbar Ghanmi
    Samah Horrigue
    Proceedings - Mathematical Sciences, 2019, 129