Fractional electromagnetic waves in plasma and dielectric media with Caputo generalized fractional derivative

被引:0
|
作者
Bhangale, N. [1 ]
Kachhia, K. B. [1 ]
机构
[1] Charotar Univ Sci & Technol, PD Patel Inst Appl Sci, Dept Math Sci, Anand 388421, Gujarat, India
关键词
Wave propagation; fractional Maxwell equations; fractional wave equation; Caputo generalized fractional derivative; Mittag-Leffler function; fractional space-time components; CALCULUS; PROPAGATION;
D O I
10.31349/RevMexFis.66.848
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The wave equation has in important role in many areas of physics. This paper addresses the solution of fractional differential equations of electromagnetic waves in plasma and dielectric media with Caputo generalized fractional derivatives. The rho-Laplace transform introduced by Fahd and Thabet was used to obtain the analytic solution of fractional differential equations arising in electromagnetism. We investigate that the wave equation in fractional space can effectively describe the behavior of spatial and time waves. The results show that the electromagnetic fields change with different fractional orders.
引用
收藏
页码:848 / 855
页数:8
相关论文
共 50 条
  • [31] Electromagnetic waves in conducting media described by a fractional derivative with non-singular kernel
    Gomez-Aguilar, J. F.
    Escobar-Jimenez, R. F.
    Lopez-Lopez, M. G.
    Alvarado-Martinez, V. M.
    Cordova-Fraga, T.
    JOURNAL OF ELECTROMAGNETIC WAVES AND APPLICATIONS, 2016, 30 (11) : 1493 - 1503
  • [32] A Fast Algorithm for the Caputo Fractional Derivative
    Wang, Kun
    Huang, Jizu
    EAST ASIAN JOURNAL ON APPLIED MATHEMATICS, 2018, 8 (04) : 656 - 677
  • [33] Incomplete Caputo fractional derivative operators
    Ozarslan, Mehmet Ali
    Ustaoglu, Ceren
    ADVANCES IN DIFFERENCE EQUATIONS, 2018,
  • [34] Unexpected behavior of Caputo fractional derivative
    Lucas Kenjy Bazaglia Kuroda
    Arianne Vellasco Gomes
    Robinson Tavoni
    Paulo Fernando de Arruda Mancera
    Najla Varalta
    Rubens de Figueiredo Camargo
    Computational and Applied Mathematics, 2017, 36 : 1173 - 1183
  • [35] On the Nonlinear Fractional Differential Equations with Caputo Sequential Fractional Derivative
    Ye, Hailong
    Huang, Rui
    ADVANCES IN MATHEMATICAL PHYSICS, 2015, 2015
  • [36] Study on generalized fuzzy fractional human liver model with Atangana-Baleanu-Caputo fractional derivative
    Verma, Lalchand
    Meher, Ramakanta
    EUROPEAN PHYSICAL JOURNAL PLUS, 2022, 137 (11):
  • [37] Incomplete Caputo fractional derivative operators
    Mehmet Ali Özarslan
    Ceren Ustaoglu
    Advances in Difference Equations, 2018
  • [38] Fractional Telegraph Equation with the Caputo Derivative
    Ashurov, Ravshan
    Saparbayev, Rajapboy
    FRACTAL AND FRACTIONAL, 2023, 7 (06)
  • [39] Caputo fractional derivative of α-fractal spline
    Priyanka, T. M. C.
    Gowrisankar, A.
    Prasad, M. Guru Prem
    Liang, Yongshun
    Cao, Jinde
    NUMERICAL ALGORITHMS, 2024,
  • [40] Unexpected behavior of Caputo fractional derivative
    Bazaglia Kuroda, Lucas Kenjy
    Gomes, Arianne Vellasco
    Tavoni, Robinson
    de Arruda Mancera, Paulo Fernando
    Varalta, Najla
    Camargo, Rubens de Figueiredo
    COMPUTATIONAL & APPLIED MATHEMATICS, 2017, 36 (03): : 1173 - 1183