Fractional electromagnetic waves in plasma and dielectric media with Caputo generalized fractional derivative

被引:0
|
作者
Bhangale, N. [1 ]
Kachhia, K. B. [1 ]
机构
[1] Charotar Univ Sci & Technol, PD Patel Inst Appl Sci, Dept Math Sci, Anand 388421, Gujarat, India
关键词
Wave propagation; fractional Maxwell equations; fractional wave equation; Caputo generalized fractional derivative; Mittag-Leffler function; fractional space-time components; CALCULUS; PROPAGATION;
D O I
10.31349/RevMexFis.66.848
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The wave equation has in important role in many areas of physics. This paper addresses the solution of fractional differential equations of electromagnetic waves in plasma and dielectric media with Caputo generalized fractional derivatives. The rho-Laplace transform introduced by Fahd and Thabet was used to obtain the analytic solution of fractional differential equations arising in electromagnetism. We investigate that the wave equation in fractional space can effectively describe the behavior of spatial and time waves. The results show that the electromagnetic fields change with different fractional orders.
引用
收藏
页码:848 / 855
页数:8
相关论文
共 50 条
  • [1] Atangana-Baleanu fractional derivative applied to electromagnetic waves in dielectric media
    Gomez-Aguilar, J. F.
    Escobar-Jimenez, R. F.
    Lopez-Lopez, M. G.
    Alvarado-Martinez, V. M.
    JOURNAL OF ELECTROMAGNETIC WAVES AND APPLICATIONS, 2016, 30 (15) : 1937 - 1952
  • [2] Fractional electromagnetic waves in conducting media
    Gomez-Aguilar, J. F.
    Yepez-Martinez, H.
    Calderon-Ramon, C.
    Benavidez-Cruz, M.
    Morales-Mendoza, L. J.
    JOURNAL OF ELECTROMAGNETIC WAVES AND APPLICATIONS, 2016, 30 (02) : 259 - 271
  • [3] Fractional viscoelastic models with Caputo generalized fractional derivative
    Bhangale, Nikita
    Kachhia, Krunal B.
    Gomez-Aguilar, J. F.
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023, 46 (07) : 7835 - 7846
  • [4] Electromagnetic waves in conducting media described by a fractional derivative with non-singular kernel
    Gomez-Aguilar, J. F.
    Escobar-Jimenez, R. F.
    Lopez-Lopez, M. G.
    Alvarado-Martinez, V. M.
    Cordova-Fraga, T.
    JOURNAL OF ELECTROMAGNETIC WAVES AND APPLICATIONS, 2016, 30 (11) : 1493 - 1503
  • [5] Universal character of the fractional space-time electromagnetic waves in dielectric media
    Gomez-Aguilar, J. F.
    Yepez-Martinez, H.
    Escobar-Jimenez, R. F.
    Astorga-Zaragoza, C. M.
    Morales-Mendoza, L. J.
    Gonzalez-Lee, M.
    JOURNAL OF ELECTROMAGNETIC WAVES AND APPLICATIONS, 2015, 29 (06) : 727 - 740
  • [6] FRACTIONAL ELECTROMAGNETIC WAVES IN PLASMA
    Gomez Aguilar, J. F.
    Razo Hernandez, J. R.
    Escobar Jimenez, R. F.
    Astorga-Zaragoza, C. M.
    Olivares Peregrino, V. H.
    Cordova Fraga, T.
    PROCEEDINGS OF THE ROMANIAN ACADEMY SERIES A-MATHEMATICS PHYSICS TECHNICAL SCIENCES INFORMATION SCIENCE, 2016, 17 (01): : 31 - 38
  • [7] Fuzzy fractional differential equations under generalized fuzzy Caputo derivative
    Allahviranloo, T.
    Armand, A.
    Gouyandeh, Z.
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2014, 26 (03) : 1481 - 1490
  • [8] A new iterative method with ρ-Laplace transform for solving fractional differential equations with Caputo generalized fractional derivative
    Bhangale, Nikita
    Kachhia, Krunal B.
    Gomez-Aguilar, J. F.
    ENGINEERING WITH COMPUTERS, 2022, 38 (03) : 2125 - 2138
  • [9] Incomplete Caputo fractional derivative operators
    Ozarslan, Mehmet Ali
    Ustaoglu, Ceren
    ADVANCES IN DIFFERENCE EQUATIONS, 2018,
  • [10] Caputo fractional derivative of α-fractal spline
    Priyanka, T. M. C.
    Gowrisankar, A.
    Prasad, M. Guru Prem
    Liang, Yongshun
    Cao, Jinde
    NUMERICAL ALGORITHMS, 2024, : 207 - 228