Fractional electromagnetic waves in plasma and dielectric media with Caputo generalized fractional derivative

被引:0
|
作者
Bhangale, N. [1 ]
Kachhia, K. B. [1 ]
机构
[1] Charotar Univ Sci & Technol, PD Patel Inst Appl Sci, Dept Math Sci, Anand 388421, Gujarat, India
关键词
Wave propagation; fractional Maxwell equations; fractional wave equation; Caputo generalized fractional derivative; Mittag-Leffler function; fractional space-time components; CALCULUS; PROPAGATION;
D O I
10.31349/RevMexFis.66.848
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The wave equation has in important role in many areas of physics. This paper addresses the solution of fractional differential equations of electromagnetic waves in plasma and dielectric media with Caputo generalized fractional derivatives. The rho-Laplace transform introduced by Fahd and Thabet was used to obtain the analytic solution of fractional differential equations arising in electromagnetism. We investigate that the wave equation in fractional space can effectively describe the behavior of spatial and time waves. The results show that the electromagnetic fields change with different fractional orders.
引用
收藏
页码:848 / 855
页数:8
相关论文
共 50 条
  • [1] Fractional viscoelastic models with Caputo generalized fractional derivative
    Bhangale, Nikita
    Kachhia, Krunal B.
    Gomez-Aguilar, J. F.
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023, 46 (07) : 7835 - 7846
  • [2] Atangana-Baleanu fractional derivative applied to electromagnetic waves in dielectric media
    Gomez-Aguilar, J. F.
    Escobar-Jimenez, R. F.
    Lopez-Lopez, M. G.
    Alvarado-Martinez, V. M.
    JOURNAL OF ELECTROMAGNETIC WAVES AND APPLICATIONS, 2016, 30 (15) : 1937 - 1952
  • [3] FRACTIONAL VECTOR CALCULUS IN THE FRAME OF A GENERALIZED CAPUTO FRACTIONAL DERIVATIVE
    Gambo, Yusuf Ya'u
    Jarad, Fahd
    Baleanu, Dumitru
    Abdeljawad, Thabet
    UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2018, 80 (04): : 219 - 228
  • [4] On the Stability of Fractional Differential Equations Involving Generalized Caputo Fractional Derivative
    Tran, Minh Duc
    Ho, Vu
    Van, Hoa Ngo
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2020, 2020
  • [5] Generalized Laplace Transform and Tempered ?-Caputo Fractional Derivative
    Medved, Milan
    Pospisil, Michal
    MATHEMATICAL MODELLING AND ANALYSIS, 2023, 28 (01) : 146 - 162
  • [6] Generalized Sumudu transform and tempered ξ-Caputo fractional derivative
    Elkhalloufy, Khadija
    Hilal, Khalid
    Kajouni, Ahmed
    FILOMAT, 2024, 38 (26) : 9213 - 9221
  • [8] FRACTIONAL ELECTROMAGNETIC WAVES IN PLASMA
    Gomez Aguilar, J. F.
    Razo Hernandez, J. R.
    Escobar Jimenez, R. F.
    Astorga-Zaragoza, C. M.
    Olivares Peregrino, V. H.
    Cordova Fraga, T.
    PROCEEDINGS OF THE ROMANIAN ACADEMY SERIES A-MATHEMATICS PHYSICS TECHNICAL SCIENCES INFORMATION SCIENCE, 2016, 17 (01): : 31 - 38
  • [9] Nonlinear dynamics and chaos in fractional differential equations with a new generalized Caputo fractional derivative
    Odibat, Zaid
    Baleanu, Dumitru
    CHINESE JOURNAL OF PHYSICS, 2022, 77 : 1003 - 1014
  • [10] Fractional integro-differential equations for electromagnetic waves in dielectric media
    Tarasov, V. E.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2009, 158 (03) : 355 - 359