Neural-network-based payload determination of a moving loader

被引:8
|
作者
Savia, M
Koivo, HN
机构
[1] Tampere Univ Technol, Automat & Control Inst, FIN-33101 Tampere, Finland
[2] Helsinki Univ Technol, Control Engn Lab, Espoo 02015, Finland
关键词
Kalman filter; neural networks; payload estimation; intelligent mine;
D O I
10.1016/S0967-0661(03)00136-9
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper describes a method that combines a Kalman filter and neural network to form an efficient data fusion technique for estimating payload in the bucket of a moving loader. The Kalman filter is used to reduce the noise level in the measurement signals before the data are fed to the neural network. A neural network then represents the nonlinear connection between the indirect measurements describing the load and the actual load in the bucket. The results show that the combination of these different methods offers a viable solution for estimating the payload. (C) 2003 Elsevier Ltd. All rights reserved.
引用
收藏
页码:555 / 561
页数:7
相关论文
共 50 条
  • [31] A neural-network-based approach for post-fabrication circuit tuning
    M. A. El-Gamal
    H. L. Abdel-Malek
    M. A. Sorour
    Neural Computing & Applications, 2005, 14 : 25 - 35
  • [32] Neural-Network-Based Nonlinear Model Predictive Control for Piezoelectric Actuators
    Cheng, Long
    Liu, Weichuan
    Hou, Zeng-Guang
    Yu, Junzhi
    Tan, Min
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2015, 62 (12) : 7717 - 7727
  • [33] Toward a completely automatic neural-network-based human chromosome analysis
    Lerner, B
    IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 1998, 28 (04): : 544 - 552
  • [34] Neural-Network-based State Estimation: the effect of Pseudo-measurements
    Bragantini, Andrea
    Baroli, Davide
    Posada-Moreno, Andres Felipe
    Benigni, Andrea
    PROCEEDINGS OF 2021 IEEE 30TH INTERNATIONAL SYMPOSIUM ON INDUSTRIAL ELECTRONICS (ISIE), 2021,
  • [35] Design, Implementation, and Evaluation of a Neural-Network-Based Quadcopter UAV System
    Jiang, Fan
    Pourpanah, Farhad
    Hao, Qi
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2020, 67 (03) : 2076 - 2085
  • [36] Constructing and applying a neural-network-based architectural landscape evaluation model
    Yang W.
    Yan C.
    Wei Y.
    Proceedings of the Institution of Civil Engineers: Smart Infrastructure and Construction, 2024, 177 (04) : 236 - 245
  • [37] A CMAC NEURAL-NETWORK-BASED ALGORITHM FOR THE KINEMATIC CONTROL OF A WALKING MACHINE
    LIN, Y
    SONG, SM
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 1992, 5 (06) : 539 - 551
  • [38] Safety Verification of Neural-Network-Based Controllers: A Set Invariance Approach
    Jouret, Louis
    Saoud, Adnane
    Olaru, Sorin
    IEEE CONTROL SYSTEMS LETTERS, 2023, 7 : 3842 - 3847
  • [39] Neural-Network-Based Approach to the Description of Vibrational Kinetics of Carbon Dioxide
    V. I. Gorikhovskii
    E. V. Kustova
    Vestnik St. Petersburg University, Mathematics, 2022, 55 : 434 - 442
  • [40] A Novel Neural-Network-Based Consensus Protocol of Nonlinear Multiagent Systems
    Zou, Wencheng
    Zhou, Jiantao
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2024, 69 (03) : 1713 - 1720