Structural basis of unidirectional export of lipopolysaccharide to the cell surface

被引:107
作者
Owens, Tristan W. [1 ]
Taylor, Rebecca J. [1 ]
Pahil, Karanbir S. [1 ]
Bertani, Blake R. [2 ]
Ruiz, Natividad [2 ]
Kruse, Andrew C. [3 ]
Kahne, Daniel [1 ]
机构
[1] Harvard Univ, Dept Chem & Chem Biol, Cambridge, MA 02138 USA
[2] Ohio State Univ, Dept Microbiol, 484 W 12th Ave, Columbus, OH 43210 USA
[3] Harvard Med Sch, Dept Biol Chem & Mol Pharmacol, Boston, MA 02115 USA
关键词
TRANSENVELOPE PROTEIN COMPLEX; OUTER-MEMBRANE; FUNCTIONAL-ANALYSIS; TRANSPORT; IDENTIFICATION; BINDING; ATPASE;
D O I
10.1038/s41586-019-1039-0
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Gram-negative bacteria are surrounded by an inner cytoplasmic membrane and by an outer membrane, which serves as a protective barrier to limit entry of many antibiotics. The distinctive properties of the outer membrane are due to the presence of lipopolysaccharide(1). This large glycolipid, which contains numerous sugars, is made in the cytoplasm; a complex of proteins forms a membrane-to-membrane bridge that mediates transport of lipopolysaccharide from the inner membrane to the cell surface(1). The inner-membrane components of the protein bridge comprise an ATP-binding cassette transporter that powers transport, but how this transporter ensures unidirectional lipopolysaccharide movement across the bridge to the outer membrane is unknown(2). Here we describe two crystal structures of a five-component inner-membrane complex that contains all the proteins required to extract lipopolysaccharide from the membrane and pass it to the protein bridge. Analysis of these structures, combined with biochemical and genetic experiments, identifies the path of lipopolysaccharide entry into the cavity of the transporter and up to the bridge. We also identify a protein gate that must open to allow movement of substrate from the cavity onto the bridge. Lipopolysaccharide entry into the cavity is ATP-independent, but ATP is required for lipopolysaccharide movement past the gate and onto the bridge. Our findings explain how the inner-membrane transport complex controls efficient unidirectional transport of lipopolysaccharide against its concentration gradient.
引用
收藏
页码:550 / +
页数:17
相关论文
共 38 条
[1]   PHENIX: a comprehensive Python']Python-based system for macromolecular structure solution [J].
Adams, Paul D. ;
Afonine, Pavel V. ;
Bunkoczi, Gabor ;
Chen, Vincent B. ;
Davis, Ian W. ;
Echols, Nathaniel ;
Headd, Jeffrey J. ;
Hung, Li-Wei ;
Kapral, Gary J. ;
Grosse-Kunstleve, Ralf W. ;
McCoy, Airlie J. ;
Moriarty, Nigel W. ;
Oeffner, Robert ;
Read, Randy J. ;
Richardson, David C. ;
Richardson, Jane S. ;
Terwilliger, Thomas C. ;
Zwart, Peter H. .
ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 2010, 66 :213-221
[2]   Towards automated crystallographic structure refinement with phenix.refine [J].
Afonine, Pavel V. ;
Grosse-Kunstleve, Ralf W. ;
Echols, Nathaniel ;
Headd, Jeffrey J. ;
Moriarty, Nigel W. ;
Mustyakimov, Marat ;
Terwilliger, Thomas C. ;
Urzhumtsev, Alexandre ;
Zwart, Peter H. ;
Adams, Paul D. .
ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 2012, 68 :352-367
[3]   The Lack of the Essential LptC Protein in the Trans-Envelope Lipopolysaccharide Transport Machine Is Circumvented by Suppressor Mutations in LptF, an Inner Membrane Component of the Escherichia coli Transporter [J].
Benedet, Mattia ;
Falchi, Federica A. ;
Puccio, Simone ;
Di Benedetto, Cristiano ;
Peano, Clelia ;
Polissi, Alessandra ;
Deho, Gianni .
PLOS ONE, 2016, 11 (08)
[4]   A cluster of residues in the lipopolysaccharide exporter that selects substrate variants for transport to the outer membrane [J].
Bertani, Blake R. ;
Taylor, Rebecca J. ;
Nagy, Emma ;
Kahne, Daniel ;
Ruiz, Natividad .
MOLECULAR MICROBIOLOGY, 2018, 109 (04) :541-554
[5]   Identification of an outer membrane protein required for the transport of lipopolysaccharide to the bacterial cell surface [J].
Bos, MP ;
Tefsen, B ;
Geurtsen, J ;
Tommassen, J .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (25) :9417-9422
[6]   Imp/OstA is required for cell envelope biogenesis in Escherichia coli [J].
Braun, M ;
Silhavy, TJ .
MOLECULAR MICROBIOLOGY, 2002, 45 (05) :1289-1302
[7]   A METHOD FOR THE DETERMINATION OF INORGANIC-PHOSPHATE IN THE PRESENCE OF LABILE ORGANIC PHOSPHATE AND HIGH-CONCENTRATIONS OF PROTEIN - APPLICATION TO LENS ATPASES [J].
CHIFFLET, S ;
TORRIGLIA, A ;
CHIESA, R ;
TOLOSA, S .
ANALYTICAL BIOCHEMISTRY, 1988, 168 (01) :1-4
[8]   Proteins Required for Lipopolysaccharide Assembly in Escherichia coli Form a Transenvelope Complex [J].
Chng, Shu-Sin ;
Gronenberg, Luisa S. ;
Kahne, Daniel .
BIOCHEMISTRY, 2010, 49 (22) :4565-4567
[9]   Characterization of the two-protein complex in Escherichia coli responsible for lipopolysaccharide assembly at the outer membrane [J].
Chng, Shu-Sin ;
Ruiz, Natividad ;
Chimalakonda, Gitanjali ;
Silhavy, Thomas J. ;
Kahne, Daniel .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2010, 107 (12) :5363-5368
[10]   Structure, function, and evolution of bacterial ATP-binding cassette systems [J].
Davidson, Amy L. ;
Dassa, Elie ;
Orelle, Cedric ;
Chen, Jue .
MICROBIOLOGY AND MOLECULAR BIOLOGY REVIEWS, 2008, 72 (02) :317-364