An inexact bundle variant suited to column generation

被引:18
作者
Kiwiel, K. C. [1 ]
Lemarechal, C. [1 ]
机构
[1] INRIA, F-38334 Montbonnot St Martin, St Ismier, France
关键词
Nondifferentiable optimization; Convex programming; Proximal bundle methods; Approximate subgradients; Column generation; Cutting-stock problem; ALGORITHM; OPTIMIZATION; APPROXIMATIONS; DECOMPOSITION; POINT;
D O I
10.1007/s10107-007-0187-4
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We give a bundle method for constrained convex optimization. Instead of using penalty functions, it shifts iterates towards feasibility, by way of a Slater point, assumed to be known. Besides, the method accepts an oracle delivering function and subgradient values with unknown accuracy. Our approach is motivated by a number of applications in column generation, in which constraints are positively homogeneous-so that zero is a natural Slater point-and an exact oracle may be time consuming. Finally, our convergence analysis employs arguments which have been little used so far in the bundle community. The method is illustrated on a number of cutting-stock problems.
引用
收藏
页码:177 / 206
页数:30
相关论文
共 42 条
[1]  
[Anonymous], 2001, Computational Combinatorial Optimization: Optimal or Provably Near-Optimal Solutions. Ed. by, DOI [DOI 10.1007/3-540-45586-8_4, 10.1007/3-540-45586-8_4]
[2]  
[Anonymous], 1996, Die Grundlehren der mathematischen Wissenschaften
[3]  
Ben Amor H., 2005, COLUMN GENERATION, P131
[4]   Non-euclidean restricted memory level method for large-scale convex optimization [J].
Ben-Tal, A ;
Nemirovski, A .
MATHEMATICAL PROGRAMMING, 2005, 102 (03) :407-456
[5]   VERY LARGE-SCALE LINEAR-PROGRAMMING - A CASE-STUDY IN COMBINING INTERIOR POINT AND SIMPLEX METHODS [J].
BIXBY, RE ;
GREGORY, JW ;
LUSTIG, IJ ;
MARSTEN, RE ;
SHANNO, DF .
OPERATIONS RESEARCH, 1992, 40 (05) :885-897
[6]   Comparison of bundle and classical column generation [J].
Briant, O. ;
Lemarechal, C. ;
Meurdesoif, Ph. ;
Michel, S. ;
Perrot, N. ;
Vanderbeck, F. .
MATHEMATICAL PROGRAMMING, 2008, 113 (02) :299-344
[7]  
Cheney EW., 1959, NUMER MATH, V1, P253, DOI [10.1007/bf01386389, DOI 10.1007/BF01386389]
[8]   CONVERGENCE OF SOME ALGORITHMS FOR CONVEX MINIMIZATION [J].
CORREA, R ;
LEMARECHAL, C .
MATHEMATICAL PROGRAMMING, 1993, 62 (02) :261-275
[9]   Optimal integer solutions to industrial cutting-stock problems: Part 2, benchmark results [J].
Degraeve, Z ;
Peeters, M .
INFORMS JOURNAL ON COMPUTING, 2003, 15 (01) :58-81