Quantum holonomies based on the Lorentz-violating tensor background

被引:38
作者
Bakke, K. [1 ]
Belich, H. [2 ]
机构
[1] Univ Fed Paraiba, Dept Fis, BR-58051970 Joao Pessoa, PB, Brazil
[2] Univ Fed Espirito Santo, Dept Fis & Quim, BR-29060900 Vitoria, ES, Brazil
关键词
AHARONOV-CASHER PHASE; NONDISPERSIVE PHASE; TOPOLOGICAL PHASE; GEOMETRIC PHASES; SYMMETRY; BREAKING; DEFECTS; MOMENT;
D O I
10.1088/0954-3899/40/6/065002
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
We study geometric quantum phases corresponding to analogues of the Anandan quantum phase (Anandan 1989 Phys. Lett. A 138 347) based on a possible scenario of the Lorentz-symmetry violation background in a tensor background. We also show that quantum holonomies associated with the analogue of the Anandan quantum phase can be determined, and discuss a way of performing one-qubit quantum gates by analogy with the holonomic quantum computation (Zanardi and Rasetti 1999 Phys. Lett. A 264 94).
引用
收藏
页数:10
相关论文
共 72 条
[1]   PHASE-CHANGE DURING A CYCLIC QUANTUM EVOLUTION [J].
AHARONOV, Y ;
ANANDAN, J .
PHYSICAL REVIEW LETTERS, 1987, 58 (16) :1593-1596
[2]   TOPOLOGICAL QUANTUM EFFECTS FOR NEUTRAL PARTICLES [J].
AHARONOV, Y ;
CASHER, A .
PHYSICAL REVIEW LETTERS, 1984, 53 (04) :319-321
[3]   SIGNIFICANCE OF ELECTROMAGNETIC POTENTIALS IN THE QUANTUM THEORY [J].
AHARONOV, Y ;
BOHM, D .
PHYSICAL REVIEW, 1959, 115 (03) :485-491
[4]   SCALAR AHARONOV-BOHM EXPERIMENT WITH NEUTRONS [J].
ALLMAN, BE ;
CIMMINO, A ;
KLEIN, AG ;
OPAT, GI ;
KAISER, H ;
WERNER, SA .
PHYSICAL REVIEW LETTERS, 1992, 68 (16) :2409-2412
[5]   Bounding isotropic Lorentz violation using synchrotron losses at LEP [J].
Altschul, Brett .
PHYSICAL REVIEW D, 2009, 80 (09)
[6]   Lorentz violation and α decay [J].
Altschul, Brett .
PHYSICAL REVIEW D, 2009, 79 (01)
[7]   Classical and quantum interaction of the dipole [J].
Anandan, J .
PHYSICAL REVIEW LETTERS, 2000, 85 (07) :1354-1357
[8]   ELECTROMAGNETIC EFFECTS IN THE QUANTUM INTERFERENCE OF DIPOLES [J].
ANANDAN, J .
PHYSICS LETTERS A, 1989, 138 (08) :347-352
[9]   NON-ADIABATIC NON-ABELIAN GEOMETRIC PHASE [J].
ANANDAN, J .
PHYSICS LETTERS A, 1988, 133 (4-5) :171-175
[10]   GEOMETRIC PHASE FOR CYCLIC MOTIONS AND THE QUANTUM STATE-SPACE METRIC [J].
ANANDAN, J .
PHYSICS LETTERS A, 1990, 147 (01) :3-8