Rough Set Subspace Error-Correcting Output Codes

被引:6
|
作者
Bagheri, Mohammad Ali [1 ]
Gao, Qigang [1 ]
Escalera, Sergio [2 ]
机构
[1] Dalhousie Univ, Fac Comp Sci, Halifax, NS, Canada
[2] UAB, Ctr Visio Computador, Bellaterra E-08193, Spain
来源
12TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM 2012) | 2012年
关键词
Error Correcting Output Codes; Rough Set; Multiclass classification; Feature subspace; MULTICLASS; BINARY;
D O I
10.1109/ICDM.2012.124
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Among the proposed methods to deal with multiclass classification problems, the Error-Correcting Output Codes (ECOC) represents a powerful framework. The key factor in designing any ECOC matrix is the independency of the binary classifiers, without which the ECOC method would be ineffective. This paper proposes an efficient new approach to the ECOC framework in order to improve independency among classifiers. The underlying rationale for our work is that we design three-dimensional codematrix, where the third dimension is the feature space of the problem domain. Using rough set-based feature selection, a new algorithm, named "Rough Set Subspace ECOC (RSS-ECOC)" is proposed. We introduce the QuickMultipleReduct algorithm in order to generate a set of reducts for a binary problem, where each reduct is used to train a dichotomizer. In addition to creating more independent classifiers, ECOC matrices with longer codes can be built. The numerical experiments in this study compare the classification accuracy of the proposed RSS-ECOC with classical ECOC, one-versus-one, and one-versus-all methods on 24 UCI datasets. The results show that the proposed technique increases the classification accuracy in comparison with the state of the art coding methods.
引用
收藏
页码:822 / 827
页数:6
相关论文
共 50 条
  • [1] Quantum error-correcting output codes
    Windridge, David
    Mengoni, Riccardo
    Nagarajan, Rajagopal
    INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2018, 16 (08)
  • [2] Deep Error-Correcting Output Codes
    Wang, Li-Na
    Wei, Hongxu
    Zheng, Yuchen
    Dong, Junyu
    Zhong, Guoqiang
    ALGORITHMS, 2023, 16 (12)
  • [3] Recoding Error-Correcting Output Codes
    Escalera, Sergio
    Pujol, Oriol
    Radeva, Petia
    MULTIPLE CLASSIFIER SYSTEMS, PROCEEDINGS, 2009, 5519 : 11 - +
  • [4] Minimal design of error-correcting output codes
    Angel Bautista, Miguel
    Escalera, Sergio
    Baro, Xavier
    Radeva, Petia
    Vitria, Jordi
    Pujol, Oriol
    PATTERN RECOGNITION LETTERS, 2012, 33 (06) : 693 - 702
  • [5] Active learning with error-correcting output codes
    Gu, Shilin
    Cai, Yang
    Shan, Jincheng
    Hou, Chenping
    NEUROCOMPUTING, 2019, 364 : 182 - 191
  • [6] The design of error-correcting output codes algorithm for the open-set recognition
    Liu, Kun-Hong
    Zhan, Wang-Ping
    Liang, Yi-Fan
    Zhang, Ya-Nan
    Guo, Hong-Zhou
    Yao, Jun-Feng
    Wu, Qing-Qiang
    Hong, Qing-Qi
    APPLIED INTELLIGENCE, 2022, 52 (07) : 7843 - 7869
  • [7] The design of error-correcting output codes algorithm for the open-set recognition
    Kun-Hong Liu
    Wang-Ping Zhan
    Yi-Fan Liang
    Ya-Nan Zhang
    Hong-Zhou Guo
    Jun-Feng Yao
    Qing-Qiang Wu
    Qing-Qi Hong
    Applied Intelligence, 2022, 52 : 7843 - 7869
  • [8] A subspace approach to error correcting output codes
    Bagheri, Mohammad Ali
    Montazer, Gholam Ali
    Kabir, Ehsanollah
    PATTERN RECOGNITION LETTERS, 2013, 34 (02) : 176 - 184
  • [9] Hierarchical error-correcting output codes based on SVDD
    Lei Lei
    Wang Xiao-dan
    Luo Xi
    Song Ya-fei
    Pattern Analysis and Applications, 2016, 19 : 163 - 171
  • [10] On the Decoding Process in Ternary Error-Correcting Output Codes
    Escalera, Sergio
    Pujol, Oriol
    Radeva, Petia
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2010, 32 (01) : 120 - 134