Development of a surface plasmon resonance and nanomechanical biosensing hybrid platform for multiparametric reading

被引:4
作者
Alvarez, Mar [1 ,2 ]
Farina, David [1 ,2 ]
Escuela, Alfonso M. [3 ]
Ramon Sendra, Jose [3 ]
Lechuga, Laura M. [1 ,2 ]
机构
[1] CSIC, Res Ctr Nanosci & Nanotechnol CIN2, Nanobiosensors & Bioanalyt Applicat Grp, Barcelona 08193, Spain
[2] CIBER BBN, Barcelona 08193, Spain
[3] Univ Las Palmas GC, Inst Appl Microelect, IUMA, Las Palmas Gran Canaria, Spain
关键词
ATOMIC-FORCE MICROSCOPY; OPTICAL BIOSENSORS; DNA HYBRIDIZATION; MICROCANTILEVERS; RECOGNITION; SENSORS;
D O I
10.1063/1.4789430
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
We have developed a hybrid platform that combines two well-known biosensing technologies based on quite different transducer principles: surface plasmon resonance and nanomechanical sensing. The new system allows the simultaneous and real-time detection of two independent parameters, refractive index change (Delta n), and surface stress change (Delta sigma) when a biomolecular interaction takes place. Both parameters have a direct relation with the mass coverage of the sensor surface. The core of the platform is a common fluid cell, where the solution arrives to both sensor areas at the same time and under the same conditions (temperature, velocity, diffusion, etc.). The main objective of this integration is to achieve a better understanding of the physical behaviour of the transducers during sensing, increasing the information obtained in real time in one single experiment. The potential of the hybrid platform is demonstrated by the detection of DNA hybridization. (C) 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4789430]
引用
收藏
页数:8
相关论文
共 29 条
[1]   Nanomechanics of the formation of DNA self-assembled monolayers and hybridization on microcantilevers [J].
Alvarez, M ;
Carrascosa, LG ;
Moreno, M ;
Calle, A ;
Zaballos, A ;
Lechuga, LM ;
Martínez-A, C ;
Tamayo, J .
LANGMUIR, 2004, 20 (22) :9663-9668
[2]   Microcantilever-based platforms as biosensing tools [J].
Alvarez, Mar ;
Lechuga, Laura M. .
ANALYST, 2010, 135 (05) :827-836
[3]   Simultaneous in situ electrochemical, surface plasmon optical, and atomic force microscopy measurements: Investigation of conjugated polymer electropolymerization [J].
Baba, Akira ;
Knoll, Wolfgang ;
Advincula, Rigoberto .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2006, 77 (06)
[4]   ADSORPTION-INDUCED SURFACE STRESS AND ITS EFFECTS ON RESONANCE FREQUENCY OF MICROCANTILEVERS [J].
CHEN, GY ;
THUNDAT, T ;
WACHTER, EA ;
WARMACK, RJ .
JOURNAL OF APPLIED PHYSICS, 1995, 77 (08) :3618-3622
[5]   USE OF SCANNING PROBE MICROSCOPY AND SURFACE-PLASMON RESONANCE AS ANALYTICAL TOOLS IN THE STUDY OF ANTIBODY-COATED MICROTITER WELLS [J].
DAVIES, J ;
ROBERTS, CJ ;
DAWKES, AC ;
SEFTON, J ;
EDWARDS, JC ;
GLASBEY, TO ;
HAYMES, AG ;
DAVIES, MC ;
JACKSON, DE ;
LOMAS, M ;
SHAKESHEFF, KM ;
TENDLER, SJB ;
WILKINS, MJ ;
WILLIAMS, PM .
LANGMUIR, 1994, 10 (08) :2654-2661
[6]   Surface plasmon resonance: principles, methods and applications in biomedical sciences [J].
Englebienne, P ;
Van Hoonacker, A ;
Verhas, M .
SPECTROSCOPY-AN INTERNATIONAL JOURNAL, 2003, 17 (2-3) :255-273
[7]   Sensitive optical biosensors for unlabeled targets: A review [J].
Fan, Xudong ;
White, Ian M. ;
Shopova, Siyka I. ;
Zhu, Hongying ;
Suter, Jonathan D. ;
Sun, Yuze .
ANALYTICA CHIMICA ACTA, 2008, 620 (1-2) :8-26
[8]   Translating biomolecular recognition into nanomechanics [J].
Fritz, J ;
Baller, MK ;
Lang, HP ;
Rothuizen, H ;
Vettiger, P ;
Meyer, E ;
Güntherodt, HJ ;
Gerber, C ;
Gimzewski, JK .
SCIENCE, 2000, 288 (5464) :316-318
[9]   Hybridization dynamics of surface immobilized DNA [J].
Hagan, MF ;
Chakraborty, AK .
JOURNAL OF CHEMICAL PHYSICS, 2004, 120 (10) :4958-4968
[10]  
Homola J, 2006, SPRINGER SER CHEM SE, V4, P1, DOI 10.1007/b100321