Investigation of Optimal Control Approaches for Inverted Pendulum

被引:0
作者
Jha, S. K. [1 ]
Yadav, A. K. [1 ]
Gaur, Prerna [1 ]
机构
[1] NSIT, Div ICE, New Delhi, India
来源
2014 6th IEEE Power India International Conference (PIICON) | 2014年
关键词
Linear quadratic regulator; optimal controller; PID controller; Pole placement; Inverted Pendulum;
D O I
暂无
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The main objective of the present work is to investigate the design aspect of optimal controller for the stability of unstable inverted pendulum system. In this paper Linear Quadratic Regulator (LQR) for optimal stability analysis of closed loop system is presented. The result of proposed controller is compared with classical proportional integral derivative (PID) controller and the controller based on pole placement technique (PPT). It is observed that the optimal control technique outperforms the other controllers and stabilizes the unstable systems in a marvelous way.
引用
收藏
页数:6
相关论文
共 16 条
[1]   The future of PID control [J].
Åström, KJ ;
Hägglund, T .
CONTROL ENGINEERING PRACTICE, 2001, 9 (11) :1163-1175
[2]  
Bryson A.E., 2018, Applied optimal control: optimization, estimation and control
[3]  
Burns R.S., 2001, ADV CONTROL ENG
[4]  
Friedland B., 1987, CONTROL SYSTEM DESIG
[5]  
Gopal M., 2009, DIGITAL CONTROL STAT, V3nd
[6]   Control of an inverted pendulum using grey prediction model [J].
Huang, SJ ;
Huang, CL .
IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, 2000, 36 (02) :452-458
[7]   Improving driving ability for a two-wheeled inverted-pendulum-type autonomous vehicle [J].
Kim, Y ;
Kim, SH ;
Kwak, YK .
PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART D-JOURNAL OF AUTOMOBILE ENGINEERING, 2006, 220 (D2) :165-175
[8]  
Kirk D.E., 2004, Optimal Control Theory: an Introduction
[9]  
Mandal AjitK., 2006, Introduction to Control Engineering: Modeling, Analysis and Design
[10]  
Mladenov Valeri, 2011, WSEAS Transactions on Circuits and Systems, V10, P49