Impact of oxygen chemistry on model interstellar grain surfaces

被引:4
|
作者
Rosu-Finsen, A. [1 ]
McCoustra, M. R. S. [1 ]
机构
[1] Heriot Watt Univ, Inst Chem Sci, Edinburgh EH14 4AS, Midlothian, Scotland
基金
英国工程与自然科学研究理事会; 英国科学技术设施理事会;
关键词
WATER ICE; CRYSTALLINE WATER; MOLECULAR-BEAMS; CARBON-MONOXIDE; DUST GRAINS; DESORPTION; O-2; MORPHOLOGY; OZONE; IRRADIATION;
D O I
10.1039/c7cp05480g
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Temperature-programmed desorption (TPD) and reflection-absorption infrared spectroscopy (RAIRS) are used to probe the effect of atomic and molecular oxygen (O and O-2) beams on amorphous silica (aSiO(2)) and water (H2O) surfaces ( porous-amorphous solid water; p-ASW, compact amorphous solid water; c-ASW, and crystalline solid water; CSW). Altering the deposition method of O-2 is shown to result in different desorption energies of O-2 due to differences in O-2 film morphology when deposited on the aSiO2 surface. O-2 enthalpy of formation is dissipated into the aSiO(2) substrate without changes in the silica network. However, on the H2O surfaces, O-2 formation enthalpy release is dissipated into the H-bonded matrix leading to morphological changes, possibly compacting p-ASW into c-ASW while CSW appears to undergo amorphisation. The enthalpy release from O-2 formation is, however, not enough to result in reactive desorption of O-2 or H2O under the current experimental circumstances. Further to this, O-2 formation on sub-monolayer quantities of H2O leads to enhanced de-wetting and a greater degree of H-bond reconnection in H2O agglomerates. Lastly, O-3 is observed from the O + O-2 reaction on all surfaces studied.
引用
收藏
页码:5368 / 5376
页数:9
相关论文
共 50 条
  • [1] Probing model interstellar grain surfaces with small molecules
    Collings, M. P.
    Frankland, V. L.
    Lasne, J.
    Marchione, D.
    Rosu-Finsen, A.
    McCoustra, M. R. S.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2015, 449 (02) : 1826 - 1833
  • [2] Interstellar oxygen chemistry
    Viti, S
    Roueff, E
    Hartquist, TW
    des Forêts, GP
    Williams, D
    ASTRONOMY & ASTROPHYSICS, 2001, 370 (02): : 557 - 569
  • [3] MCMC simulation of interstellar grain chemistry
    Senin, Pavel
    Keane, J. V.
    ASTROBIOLOGY, 2007, 7 (03) : 529 - 529
  • [4] GAS-GRAIN MODELS OF INTERSTELLAR CHEMISTRY
    HERBST, E
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1992, 203 : 5 - NUCL
  • [5] Modelling of surface chemistry on an inhomogeneous interstellar grain
    Cuppen, H. M.
    Garrod, R. T.
    ASTRONOMY & ASTROPHYSICS, 2011, 529
  • [6] Differential adsorption of CHON isomers at interstellar grain surfaces
    Lattelais, M.
    Pauzat, F.
    Ellinger, Y.
    Ceccarelli, C.
    ASTRONOMY & ASTROPHYSICS, 2015, 578
  • [7] PHYSICAL ADSORPTION OF HYDROGEN ON INTERSTELLAR GRAPHITE GRAIN SURFACES
    WILLIS, RF
    FITTON, B
    ASTROPHYSICS AND SPACE SCIENCE, 1975, 34 (01) : 57 - 71
  • [8] Effects of turbulent dust grain motion to interstellar chemistry
    Ge, J. X.
    He, J. H.
    Yan, H. R.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2016, 455 (04) : 3570 - 3587
  • [9] GAS-GRAIN MODELS FOR INTERSTELLAR ANION CHEMISTRY
    Cordiner, M. A.
    Charnley, S. B.
    ASTROPHYSICAL JOURNAL, 2012, 749 (02):
  • [10] Probing the surfaces of interstellar dust grains: the adsorption of CO at bare grain surfaces
    Fraser, HJ
    Bisschop, SE
    Pontoppidan, KM
    Tielens, AGGM
    van Dishoeck, EF
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2005, 356 (04) : 1283 - 1292