A Priori Error Analysis for Space-Time Finite Element Discretization of Parabolic Optimal Control Problems

被引:0
|
作者
Meidner, D. [1 ]
Vexler, B. [1 ]
机构
[1] Tech Univ Munich, Fak Math, Lehrstuhl Math Optimierung, D-8046 Garching, Germany
基金
奥地利科学基金会;
关键词
D O I
10.1007/978-3-540-69777-0_77
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article we discuss a priori error estimates for Galerkin finite element discretizations of optimal control problems governed by linear parabolic equations and subject to inequality control constraints. The space discretization of the state variable is done using usual conforming finite elements, whereas the time discretization is based on discontinuous Galerkin methods. For different types of control discretizations we provide error estimates of optimal order with respect to both space and time discretization parameters taking into account the spatial and the temporal regularity of the optimal solution. For the treatment of the control discretization we discuss different approaches extending techniques known from the elliptic case. For detailed proofs and numerical results we refer to [18, 19].
引用
收藏
页码:645 / 652
页数:8
相关论文
共 50 条
  • [21] The space-time finite element method for parabolic problems
    Li Hong
    Liu Ru-xun
    Applied Mathematics and Mechanics, 2001, 22 (6) : 687 - 700
  • [22] THE SPACE-TIME FINITE ELEMENT METHOD FOR PARABOLIC PROBLEMS
    李宏
    刘儒勋
    Applied Mathematics and Mechanics(English Edition), 2001, (06) : 687 - 700
  • [23] A priori error estimates for the finite element discretization of optimal distributed control problems governed by the biharmonic operator
    S. Frei
    R. Rannacher
    W. Wollner
    Calcolo, 2013, 50 : 165 - 193
  • [24] A priori error estimates for the finite element discretization of optimal distributed control problems governed by the biharmonic operator
    Frei, S.
    Rannacher, R.
    Wollner, W.
    CALCOLO, 2013, 50 (03) : 165 - 193
  • [25] Finite element error estimation for parabolic optimal control problems with time delay
    Zhang, Xindan
    Zhao, Jianping
    Hou, Yanren
    APPLIED NUMERICAL MATHEMATICS, 2025, 212 : 176 - 196
  • [26] Robust space-time finite element methods for parabolic distributed optimal control problems with energy regularization
    Langer, Ulrich
    Steinbach, Olaf
    Yang, Huidong
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2024, 50 (02)
  • [27] Space-Time Least-Squares Finite Element Methods for Parabolic Distributed Optimal Control Problems
    Fuhrer, Thomas
    Karkulik, Michael
    COMPUTATIONAL METHODS IN APPLIED MATHEMATICS, 2024, 24 (03) : 673 - 691
  • [28] UNSTRUCTURED SPACE-TIME FINITE ELEMENT METHODS FOR OPTIMAL CONTROL OF PARABOLIC EQUATIONS
    Langer, Ulrich
    Steinbach, Olaf
    Troltzsch, Fredi
    Yang, Huidong
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2021, 43 (02): : A744 - A771
  • [29] A priori error estimates of Crank-Nicolson finite element method for parabolic optimal control problems
    Zhang, Xindan
    Zhao, Jianping
    Hou, Yanren
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2023, 144 : 274 - 289
  • [30] A priori error estimates for higher order variational discretization and mixed finite element methods of optimal control problems
    Zuliang Lu
    Yanping Chen
    Yunqing Huang
    Journal of Inequalities and Applications, 2012