Epigenetic Reprogramming and Small RNA Silencing of Transposable Elements in Pollen

被引:772
|
作者
Slotkin, R. Keith [1 ]
Vaughn, Matthew [1 ]
Borges, Filipe [2 ]
Tanurdzic, Milos [1 ]
Becker, Joerg D. [2 ]
Feijo, Jose A. [2 ,3 ]
Martienssen, Robert A. [1 ]
机构
[1] Cold Spring Harbor Lab, Cold Spring Harbor, NY 11724 USA
[2] Ctr Biol Desenvolvimento, Inst Gulbenkian Ciencia, P-2780901 Oeiras, Portugal
[3] Univ Lisbon, Fac Ciencias, Dept Biol Vegetal, Lisbon, MS, Portugal
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
MALE GAMETOPHYTE DEVELOPMENT; TISSUE-SPECIFIC CONTROL; DNA METHYLATION; DROSOPHILA-MELANOGASTER; GENE-EXPRESSION; MUTATOR TRANSPOSONS; INTERFERING RNA; H3; METHYLATION; FLAMENCO GENE; ARABIDOPSIS;
D O I
10.1016/j.cell.2008.12.038
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The mutagenic activity of transposable elements (TEs) is suppressed by epigenetic silencing and small interfering RNAs (siRNAs), especially in gametes that could transmit transposed elements to the next generation. In pollen from the model plant Arabidopsis, we show that TEs are unexpectedly reactivated and transpose, but only in the pollen vegetative nucleus, which accompanies the sperm cells but does not provide DNA to the fertilized zygote. TE expression coincides with downregulation of the heterochromatin remodeler DECREASE IN DNA METHYLATION 1 and of many TE siRNAs. However, 21 nucleotide siRNAs from Athila retrotransposons are generated and accumulate in pollen and sperm, suggesting that siRNA from TEs activated in the vegetative nucleus can target silencing in gametes. We propose a conserved role for reprogramming in germline companion cells, such as nurse cells in insects and vegetative nuclei in plants, to reveal intact TEs in the genome and regulate their activity in gametes.
引用
收藏
页码:461 / 472
页数:12
相关论文
共 50 条
  • [1] Reprogramming of DNA Methylation in Pollen Guides Epigenetic Inheritance via Small RNA
    Calarco, Joseph P.
    Borges, Filipe
    Donoghue, Mark T. A.
    Van Ex, Frederic
    Jullien, Pauline E.
    Lopes, Telma
    Gardner, Rui
    Berger, Frederic
    Feijo, Jose A.
    Becker, Joerg D.
    Martienssen, Robert A.
    CELL, 2012, 151 (01) : 194 - 205
  • [2] A "mille-feuille" of silencing: Epigenetic control of transposable elements
    Rigal, Melanie
    Mathieu, Olivier
    BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS, 2011, 1809 (08): : 452 - 458
  • [3] Taming transposable elements in vertebrates: from epigenetic silencing to domestication
    Almeida, Miguel Vasconcelos
    Vernaz, Gregoire
    Putman, Audrey L. K.
    Miska, Eric A.
    TRENDS IN GENETICS, 2022, 38 (06) : 529 - 553
  • [4] Double-edged sword: The evolutionary consequences of the epigenetic silencing of transposable elements
    Choi, Jae Young
    Lee, Yuh Chwen G.
    PLOS GENETICS, 2020, 16 (07):
  • [5] Silencing of transposable elements in plants
    Okamoto, H
    Hirochika, H
    TRENDS IN PLANT SCIENCE, 2001, 6 (11) : 527 - 534
  • [6] RNAi: a defensive RNA-silencing against viruses and transposable elements
    N Buchon
    C Vaury
    Heredity, 2006, 96 : 195 - 202
  • [7] RNAi: a defensive RNA-silencing against viruses and transposable elements
    Buchon, N
    Vaury, C
    HEREDITY, 2006, 96 (02) : 195 - 202
  • [8] Evolutionary dynamics of transposable elements in a small RNA world
    Blumenstiel, Justin P.
    TRENDS IN GENETICS, 2011, 27 (01) : 23 - 31
  • [9] Small RNA-Mediated Epigenetic Myostatin Silencing
    Roberts, Thomas C.
    Andaloussi, Samir E. L.
    Morris, Kevin V.
    McClorey, Graham
    Wood, Matthew J. A.
    MOLECULAR THERAPY-NUCLEIC ACIDS, 2012, 1
  • [10] The Evolution of Small-RNA-Mediated Silencing of an Invading Transposable Element
    Kelleher, Erin S.
    Azevedo, Ricardo B. R.
    Zheng, Yichen
    GENOME BIOLOGY AND EVOLUTION, 2018, 10 (11): : 3038 - 3057