Recent Advances in Thermal Conductivity of Nanofluids

被引:3
作者
Witharana, Sanjeeva [1 ]
Weliwita, Jinendrika Anushi [2 ]
Chen, Haisheng [3 ]
Wang, Liang [3 ]
机构
[1] Univ Leeds, Inst Particle Sci & Engn, Leeds LS2 9JT, W Yorkshire, England
[2] Univ Leeds, Sch Math, Leeds LS2 9JT, W Yorkshire, England
[3] Chinese Acad Sci, Inst Engn Thermophys, Beijing 100190, Peoples R China
关键词
Aggregation; brownian motion; enhancement; nanofluids; thermal conductivity; HEAT-TRANSFER CHARACTERISTICS; PARTICLE-SIZE; INTERFACIAL LAYERS; CARBON NANOTUBES; BROWNIAN-MOTION; ENHANCEMENT; MODEL; SUSPENSIONS; FLUID; AGGREGATION;
D O I
10.2174/18722105113079990006
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
This paper presents the most recent review of research articles and patents on thermal conductivity on nanofluids. Larger portion of literature accounts for experimental investigations, which is a sign of the preference for hands-on work by experimentalists. Metallic, non-metallic as well as ceramic nanoparticles of different sizes and shapes were suspended in common heat transfer liquids and their thermal conductivities were measured. In contrast to previous belief, it has now been proven that when the nanoparticle concentration is kept low the degree of enhancement falls reasonably within the boundaries predicted by the effective medium theories. There are strong evidences to suggest that the main mechanisms driving the thermal conductivity behavior are nanoparticle aggregation and the particle Brownian motion in suspension.
引用
收藏
页码:198 / 207
页数:10
相关论文
共 114 条
  • [1] [Anonymous], INT J HEAT MASS TRAN
  • [2] [Anonymous], ANLESD079
  • [3] Thermal conductivity enhancement in aqueous suspensions of carbon multi-walled and double-walled nanotubes in the presence of two different dispersants
    Assael, MJ
    Metaxa, IN
    Arvanitidis, J
    Christofilos, D
    Lioutas, C
    [J]. INTERNATIONAL JOURNAL OF THERMOPHYSICS, 2005, 26 (03) : 647 - 664
  • [4] Thermal conductivity of suspensions of carbon nanotubes in water
    Assael, MJ
    Chen, CF
    Metaxa, I
    Wakeham, WA
    [J]. INTERNATIONAL JOURNAL OF THERMOPHYSICS, 2004, 25 (04) : 971 - 985
  • [5] The effect of particle size on the thermal conductivity of alumina nanofluids
    Beck, Michael P.
    Yuan, Yanhui
    Warrier, Pramod
    Teja, Amyn S.
    [J]. JOURNAL OF NANOPARTICLE RESEARCH, 2009, 11 (05) : 1129 - 1136
  • [6] Characterization of the temperature oscillation technique to measure the thermal conductivity of fluids
    Bhattacharya, P.
    Nara, S.
    Vijayan, P.
    Tang, T.
    Lai, W.
    Phelan, P. E.
    Prasher, R. S.
    Song, D. W.
    Wang, J.
    [J]. INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2006, 49 (17-18) : 2950 - 2956
  • [7] Bonetti M, 2011, REV SCI INSTRUM, P82
  • [9] A benchmark study on the thermal conductivity of nanofluids
    Buongiorno, Jacopo
    Venerus, David C.
    Prabhat, Naveen
    McKrell, Thomas
    Townsend, Jessica
    Christianson, Rebecca
    Tolmachev, Yuriy V.
    Keblinski, Pawel
    Hu, Lin-wen
    Alvarado, Jorge L.
    Bang, In Cheol
    Bishnoi, Sandra W.
    Bonetti, Marco
    Botz, Frank
    Cecere, Anselmo
    Chang, Yun
    Chen, Gany
    Chen, Haisheng
    Chung, Sung Jae
    Chyu, Minking K.
    Das, Sarit K.
    Di Paola, Roberto
    Ding, Yulong
    Dubois, Frank
    Dzido, Grzegorz
    Eapen, Jacob
    Escher, Werner
    Funfschilling, Denis
    Galand, Quentin
    Gao, Jinwei
    Gharagozloo, Patricia E.
    Goodson, Kenneth E.
    Gutierrez, Jorge Gustavo
    Hong, Haiping
    Horton, Mark
    Hwang, Kyo Sik
    Iorio, Carlo S.
    Jang, Seok Pil
    Jarzebski, Andrzej B.
    Jiang, Yiran
    Jin, Liwen
    Kabelac, Stephan
    Kamath, Aravind
    Kedzierski, Mark A.
    Kieng, Lim Geok
    Kim, Chongyoup
    Kim, Ji-Hyun
    Kim, Seokwon
    Lee, Seung Hyun
    Leong, Kai Choong
    [J]. JOURNAL OF APPLIED PHYSICS, 2009, 106 (09)
  • [10] Cahill D G, 1990, REV SCI INSTRUM, P61