Trapping dynamics of ethane on Si(100)-(2x1): Molecular beam experiments and molecular dynamics simulations

被引:17
作者
Reeves, CT
Ferguson, BA
Mullins, CB [1 ]
Sitz, GO
Helmer, BA
Graves, DB
机构
[1] Univ Texas, Dept Chem Engn, Austin, TX 78712 USA
[2] Univ Texas, Dept Phys, Austin, TX 78712 USA
[3] Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA
关键词
D O I
10.1063/1.480083
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The trapping probability, or physical adsorption probability, of ethane on a clean Si(100)-(2x1) surface has been measured as a function of the incident translational energy and incident polar angle of the molecule at a surface temperature of 65 K. At all incident angles the trapping probability decreases as the translational energy of the incoming ethane molecule is increased from 0.05 to 1.3 eV. As the incident polar angle, with respect to the surface normal, is increased, the trapping probability decreases. This decrease in trapping probability with increasing polar angle contradicts the idea of normal energy scaling and has been seen in very few cases. Classical molecular dynamics calculations have been employed to study the cause of this unusual angular dependence. This simulation predicts trapping probabilities in good agreement with the experimental data. Analysis of the computed trajectories indicates that the initial site of impact within the unit cell, as well as energy exchange on initial impact with the surface, is important in determining the fate of an incident molecule. Normal momentum of the incident molecule is dissipated during the first impact much more efficiently than is parallel momentum. The simulations also indicate that the observed angular dependence can be explained in terms of parallel momentum accommodation. Large amounts of parallel momentum remaining after initial impact may be converted to normal momentum on subsequent impacts, causing molecules to scatter from the surface. Therefore, molecules that impact the surface at glancing angles and high translational kinetic energies are more likely to scatter from the surface than those at normal incidence or with lower translational kinetic energy. (C) 1999 American Institute of Physics.
引用
收藏
页码:7567 / 7575
页数:9
相关论文
共 59 条
[1]   DYNAMICS OF MOLECULAR ADSORPTION OF ETHANE WITH PT(111) - A SUPERSONIC MOLECULAR-BEAM STUDY [J].
ARUMAINAYAGAM, CR ;
SCHOOFS, GR ;
MCMASTER, MC ;
MADIX, RJ .
JOURNAL OF PHYSICAL CHEMISTRY, 1991, 95 (03) :1041-1047
[2]   ADSORBATE-ASSISTED ADSORPTION - TRAPPING DYNAMICS OF XE ON PT(111) AT NONZERO COVERAGES [J].
ARUMAINAYAGAM, CR ;
STINNETT, JA ;
MCMASTER, MC ;
MADIX, RJ .
JOURNAL OF CHEMICAL PHYSICS, 1991, 95 (07) :5437-5443
[3]   THE DYNAMICS OF PRECURSOR ADSORPTION - ETHANE ON PT(111) [J].
ARUMAINAYAGAM, CR ;
MCMASTER, MC ;
MADIX, RJ .
SURFACE SCIENCE, 1990, 237 (1-3) :L424-L431
[4]   DYNAMICS OF MOLECULAR CH4 ADSORPTION ON PT(111) [J].
ARUMAINAYAGAM, CR ;
MCMASTER, MC ;
SCHOOFS, GR ;
MADIX, RJ .
SURFACE SCIENCE, 1989, 222 (01) :213-246
[5]   MOLECULAR-BEAM STUDIES OF GAS-SURFACE COLLISION DYNAMICS [J].
ARUMAINAYAGAM, CR ;
MADIX, RJ .
PROGRESS IN SURFACE SCIENCE, 1991, 38 (01) :1-102
[6]   TRAPPING DYNAMICS OF XENON ON PT(111) [J].
ARUMAINAYAGAM, CR ;
MADIX, RJ ;
MCMASTER, MC ;
SUZAWA, VM ;
TULLY, JC .
SURFACE SCIENCE, 1990, 226 (1-2) :180-190
[7]  
ARUMAINAYAGAM CR, 1991, DYNAMICS GAS SURFACE
[8]  
Auerbach D. J., 1988, ATOMIC MOL BEAM METH, V1
[9]   COMPARATIVE-STUDY OF SILICON EMPIRICAL INTERATOMIC POTENTIALS [J].
BALAMANE, H ;
HALICIOGLU, T ;
TILLER, WA .
PHYSICAL REVIEW B, 1992, 46 (04) :2250-2279
[10]   MOLECULAR-DYNAMICS WITH COUPLING TO AN EXTERNAL BATH [J].
BERENDSEN, HJC ;
POSTMA, JPM ;
VANGUNSTEREN, WF ;
DINOLA, A ;
HAAK, JR .
JOURNAL OF CHEMICAL PHYSICS, 1984, 81 (08) :3684-3690