Integral Brauer-Manin obstructions for sums of two squares and a power

被引:4
作者
Gundlach, Fabian [1 ]
机构
[1] Univ Munich, Math Inst, D-80333 Munich, Germany
来源
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES | 2013年 / 88卷
关键词
HASSE PRINCIPLE; WEAK APPROXIMATION; POINTS; PENCILS;
D O I
10.1112/jlms/jdt042
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We use Brauer-Manin obstructions to explain failures of the integral Hasse principle and strong approximation away from infinity for the equation x(2) + y(2) + z(k) = m with fixed integers k >= 3 and m. Under Schinzel's hypothesis (H), we prove that Brauer-Manin obstructions corresponding to specific Azumaya algebras explain all failures of strong approximation away from infinity at the variable z. Finally, we present an algorithm that, again under Schinzel's hypothesis (H), finds out whether the equation has any integral solutions.
引用
收藏
页码:599 / 618
页数:20
相关论文
共 24 条
[1]  
[Anonymous], 2006, CAMBRIDGE STUD ADV M
[2]  
Colliot-Thelene J.-L., 2012, APPROXIMATION FORTE
[3]   BRAUER GROUP AND WHOLE POINTS OF TWO FAMILIES OF CUBIC SURFACES CLOSELY CONNECTED [J].
Colliot-Thelene, Jean-Louis ;
Wittenberg, Olivier .
AMERICAN JOURNAL OF MATHEMATICS, 2012, 134 (05) :1303-1327
[4]   Strong approximation for the total space of certain quadric fibrations [J].
Colliot-Thelene, Jean-Louis ;
Xu, Fei .
ACTA ARITHMETICA, 2013, 157 (02) :169-199
[5]   Brauer-Manin obstruction for integral points of homogeneous spaces and representation by integral quadratic forms [J].
Colliot-Thelene, Jean-Louis ;
Xu, Fei .
COMPOSITIO MATHEMATICA, 2009, 145 (02) :309-363
[6]   Hasse principle for pencils of curves of genus one whose Jacobians have rational 2-division points [J].
Colliot-Thelene, JL ;
Skorobogatov, AN ;
Swinnerton-Dyer, P .
INVENTIONES MATHEMATICAE, 1998, 134 (03) :579-650
[7]  
Colliot-Thelene JL, 1998, J REINE ANGEW MATH, V495, P1
[8]  
COLLIOTTHELENE JL, 1994, J REINE ANGEW MATH, V453, P49
[9]   THE HASSE PRINCIPLE AND THE WEAK APPROXIMATION AND A SCHINZEL HYPOTHESIS [J].
COLLIOTTHELENE, JL ;
SANSUC, JJ .
ACTA ARITHMETICA, 1982, 41 (01) :33-53
[10]  
Davenport H, 1937, P LOND MATH SOC, V43, P142