The importance of hydrogen's potential-energy surface and the strength of the forming R-H bond in surface hydrogenation reactions -: art. no. 044705

被引:18
作者
Crawford, P [1 ]
Hu, P [1 ]
机构
[1] Queens Univ Belfast, Sch Chem, Belfast BT9 5AG, Antrim, North Ireland
关键词
D O I
10.1063/1.2159482
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
An understanding of surface hydrogenation reactivity is a prevailing issue in chemistry and vital to the rational design of future catalysts. In this density-functional theory study, we address hydrogenation reactivity by examining the reaction pathways for N+H -> NH and NH+H -> NH2 over the close-packed surfaces of the 4d transition metals from Zr-Pd. It is found that the minimum-energy reaction pathway is dictated by the ease with which H can relocate between hollow-site and top-site adsorption geometries. A transition state where H is close to a top site reduces the instability associated with bond sharing of metal atoms by H and N (NH) (bonding competition). However, if the energy difference between hollow-site and top-site adsorption energies (Delta E-H) is large this type of transition state is unfavorable. Thus we have determined that hydrogenation reactivity is primarily controlled by the potential-energy surface of H on the metal, which is approximated by Delta E-H, and that the strength of N (NH) chemisorption energy is of less importance. Delta E-H has also enabled us to make predictions regarding the structure sensitivity of these reactions. Furthermore, we have found that the degree of bonding competition at the transition state is responsible for the trend in reaction barriers (E-a) across the transition series. When this effect is quantified a very good linear correlation is found with E-a. In addition, we find that when considering a particular type of reaction pathway, a good linear correlation is found between the destabilizing effects of bonding competition at the transition state and the strength of the forming N-H (HN-H) bond. (c) 2006 American Institute of Physics.
引用
收藏
页数:7
相关论文
共 36 条
[1]  
Aika K., 1995, AMMONIA CATALYSIS MA, Vfirst
[2]   ETHYLENE HYDROGENATION MECHANISM ON THE PT(111) SURFACE - THEORETICAL DETERMINATION [J].
ANDERSON, AB ;
CHOE, SJ .
JOURNAL OF PHYSICAL CHEMISTRY, 1989, 93 (16) :6145-6149
[3]   The synthesis of ammonia over a ruthenium single crystal [J].
Dahl, S ;
Taylor, PA ;
Tornqvist, E ;
Chorkendorff, I .
JOURNAL OF CATALYSIS, 1998, 178 (02) :679-686
[4]   Surface science based microkinetic analysis of ammonia synthesis over ruthenium catalysts [J].
Dahl, S ;
Sehested, J ;
Jacobsen, CJH ;
Törnqvist, E ;
Chorkendorff, I .
JOURNAL OF CATALYSIS, 2000, 192 (02) :391-399
[5]   Fischer-Tropsch synthesis: current mechanism and futuristic needs [J].
Davis, BH .
FUEL PROCESSING TECHNOLOGY, 2001, 71 (1-3) :157-166
[6]   Vibrations, coverage, and lateral order of atomic nitrogen and formation of NH3 on Ru(10(1)over-bar0) [J].
Dietrich, H ;
Jacobi, K ;
Ertl, G .
JOURNAL OF CHEMICAL PHYSICS, 1997, 106 (22) :9313-9319
[7]   The Fischer-Tropsch process: 1950-2000 [J].
Dry, ME .
CATALYSIS TODAY, 2002, 71 (3-4) :227-241
[8]   SURFACE SCIENCE AND CATALYSIS - STUDIES ON THE MECHANISM OF AMMONIA-SYNTHESIS - THE EMMETT,P.H. AWARD ADDRESS [J].
ERTL, G .
CATALYSIS REVIEWS-SCIENCE AND ENGINEERING, 1980, 21 (02) :201-223
[9]   Further considerations on the thermodynamics of chemical equilibria and reaction rates. [J].
Evans, MG ;
Polanyi, M .
TRANSACTIONS OF THE FARADAY SOCIETY, 1936, 32 (02) :1333-1359
[10]   HYDROGENATION OF CHEMISORBED ETHYLENE ON CLEAN, HYDROGEN, AND ETHYLIDYNE COVERED PLATINUM(111) CRYSTAL-SURFACES [J].
GODBEY, D ;
ZAERA, F ;
YEATES, R ;
SOMORJAI, GA .
SURFACE SCIENCE, 1986, 167 (01) :150-166